

Enterprise AI Maturity Models Beyond Pilot Deployments

Anirudh Menon

Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram, India

Sneha Kulkarni

Reva University, Bengaluru, India

Meenakshi Iyer

Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram, India

Submitted on: January 2, 2022

Accepted on: January 11, 2022

Published on: January 30, 2022

DOI: [10.5281/zenodo.18077338](https://doi.org/10.5281/zenodo.18077338)

Abstract—Enterprise adoption of artificial intelligence has progressed rapidly, yet many initiatives remain confined to pilot deployments that fail to achieve sustained organizational impact. This paper examines the structural, architectural, and governance limitations that prevent enterprises from scaling AI beyond experimental use. We propose a multidimensional maturity framework that integrates technical capability, organizational alignment, operational readiness, and decision accountability. The model emphasizes system integration, lifecycle governance, and human centered decision support as prerequisites for enterprise scale AI. Empirical evaluation across simulated enterprise environments demonstrates measurable gains in reliability, reuse, and decision effectiveness as organizations advance through maturity levels.

Index Terms—Enterprise AI, maturity models, decision support systems, MLOps, governance, scalable architectures

I. INTRODUCTION

Artificial intelligence has emerged as a foundational capability within modern enterprises, influencing how organizations analyze information, automate operations, and support complex decision making. Machine learning models are increasingly embedded in processes such as demand forecasting, risk assessment, resource optimization, and knowledge discovery. However, the organizational value of these systems remains uneven. While isolated deployments often demonstrate strong predictive performance, many enterprises struggle to translate experimental success into sustained, organization wide impact.

A recurring limitation is the tendency to treat artificial intelligence initiatives as discrete technical projects rather than as evolving enterprise capabilities. Pilot deployments typically emphasize rapid experimentation, localized datasets, and narrowly scoped objectives. These characteristics are appropriate for validating feasibility, but they rarely address the structural

requirements of enterprise environments, where systems must remain reliable under changing conditions, integrate with heterogeneous platforms, and support accountability across organizational boundaries. As a result, models that perform well in controlled settings often fail when exposed to operational complexity.

Enterprise environments introduce challenges that extend beyond algorithmic design. Data sources are distributed, governed by varying policies, and subject to quality fluctuations. Decision processes involve multiple stakeholders with differing objectives and risk tolerances. In such contexts, artificial intelligence systems must operate within established governance frameworks while adapting to evolving information flows. Without mechanisms that align technical behavior with organizational constraints, AI deployments risk becoming brittle or misaligned with business priorities.

Another critical factor is the relationship between artificial intelligence systems and human decision makers. In many domains, decisions informed by AI carry material consequences, including financial risk, safety considerations, and regulatory exposure. Trust in AI systems therefore depends not only on predictive accuracy but also on transparency, interpretability, and the ability to audit outcomes. When these properties are absent or poorly defined, organizations often limit AI usage to advisory roles or disengage from deployment altogether, regardless of potential performance gains.

Lifecycle dynamics further complicate enterprise scale adoption. Machine learning models are sensitive to changes in data distributions, operational contexts, and external conditions. Over time, these shifts can degrade performance in subtle ways that are difficult to detect without systematic monitoring. Enterprises that lack structured lifecycle management practices face increasing operational risk as models age, interact with new systems, or are repurposed for contexts beyond their original design.

Despite growing recognition of these challenges, structured approaches for assessing and advancing enterprise AI capability

remain limited. Existing maturity frameworks often emphasize infrastructure readiness or tool adoption while underrepresenting governance, decision integration, and organizational alignment. This gap leaves enterprises without clear criteria to evaluate progress beyond experimentation or to prioritize investments that support long term sustainability.

Addressing these limitations requires reframing enterprise AI adoption as a progression of maturity rather than a series of isolated deployments. Mature AI capabilities are characterized by architectural integration, lifecycle governance, and explicit alignment with decision processes. Such systems function as dependable organizational assets, supporting informed human judgment while operating within defined accountability structures. Understanding and formalizing this progression is essential for enabling artificial intelligence to deliver durable value at enterprise scale.

II. LITERATURE REVIEW

Research on enterprise artificial intelligence has evolved across several intersecting domains, including organizational adoption, decision support, explainability, governance, and system lifecycle management. Rather than focusing solely on algorithmic innovation, recent work increasingly emphasizes the conditions under which AI systems deliver durable value in complex organizational environments. This section reviews relevant contributions by grouping them into thematic areas that collectively inform enterprise AI maturity beyond pilot deployments.

A. Enterprise Adoption and Organizational Context

Enterprise adoption of artificial intelligence is shaped by organizational readiness as much as by technical capability. Studies examining early AI deployments highlight that many initiatives stall after initial experimentation due to misalignment between technical teams and business stakeholders [1], [2]. Organizational structures, decision authority, and incentive mechanisms influence whether AI systems are trusted and integrated into routine operations [3].

Empirical analyses further suggest that enterprises often underestimate the coordination required to operationalize AI across departments [4]. Without shared understanding of model objectives and limitations, AI outputs are frequently ignored or overridden, limiting organizational learning [5]. These findings indicate that maturity depends on embedding AI within decision processes rather than treating it as an external analytical tool.

B. Decision Support Systems and Human Judgment

A significant body of research frames artificial intelligence as a component of decision support systems rather than an autonomous decision maker. This perspective emphasizes augmentation, scenario evaluation, and contextual reasoning [6], [7]. Studies show that decision quality improves when AI systems provide structured insights while preserving human oversight [8].

Research in applied domains such as pricing, healthcare, and individualized prediction illustrates that decision relevance

depends on alignment with domain specific constraints [9], [10]. Systems that fail to incorporate institutional context may achieve statistical accuracy while remaining operationally ineffective [11], [12]. These observations reinforce the need for maturity models that integrate decision workflows alongside technical performance.

C. Explainability, Interpretability, and Trust

Trust in enterprise AI systems is closely linked to explainability and interpretability. Multiple studies demonstrate that opaque models reduce adoption, particularly in settings where decisions carry ethical, financial, or safety implications [13], [14]. Explainable approaches help stakeholders understand model behavior, assess limitations, and challenge outcomes when necessary [15], [16].

Interpretability is also associated with improved governance and accountability. Research highlights that transparent models facilitate auditing and compliance by making decision logic accessible to non technical stakeholders [17]. Conversely, lack of explainability can result in overreliance or rejection, both of which undermine effective decision making [18]. These findings position explainability as a core dimension of enterprise AI maturity.

D. Governance, Ethics, and Accountability

Governance considerations are increasingly central to enterprise AI research. Ethical frameworks emphasize responsibility, fairness, and accountability across the AI lifecycle [19], [20]. Studies note that governance mechanisms are often reactive, introduced only after systems are deployed, which limits their effectiveness [21].

Research also identifies gaps between technical controls and organizational accountability structures [22]. Without clearly defined ownership of AI driven decisions, enterprises face challenges in assigning responsibility for errors or unintended consequences [18]. These issues highlight the importance of integrating governance into maturity assessments rather than treating it as a compliance afterthought.

E. Operationalization and Lifecycle Management

Operational sustainability of AI systems depends on effective lifecycle management, including monitoring, retraining, and adaptation to changing conditions. Studies document performance degradation caused by data drift and evolving operational contexts [23], [24]. Without continuous oversight, such degradation may remain undetected until significant impact occurs [25].

Research in applied healthcare and biomedical domains illustrates the risks associated with static deployment of predictive models [26], [27]. These findings underscore the need for maturity models that account for long term operational resilience rather than initial deployment success.

F. System Design and Future Orientation

Several studies explore how system design choices influence enterprise readiness for AI. Low power, scalable, and modular

architectures are identified as enablers of sustainable deployment [28]. Forward looking analyses argue that enterprises must anticipate evolving regulatory, ethical, and technological landscapes when designing AI systems [21], [29].

Collectively, this body of research reveals a consistent pattern: enterprise AI success depends on coordinated progress across technical, organizational, and governance dimensions. While individual studies address specific challenges, an integrated maturity perspective remains underdeveloped. This gap motivates the need for comprehensive models that guide enterprises beyond pilot deployments toward stable, accountable, and decision aligned AI capabilities.

III. METHODOLOGY

A. Enterprise AI Maturity Framework

The proposed model defines five maturity levels: Experimental, Managed, Integrated, Operational, and Strategic. Each level evaluates capabilities across architecture, data governance, lifecycle control, and decision integration.

$$M = \sum_{i=1}^n w_i \cdot C_i \quad (1)$$

where C_i represents capability dimensions and w_i denotes enterprise weighted importance.

B. Architectural Model

Enterprise scale artificial intelligence requires architectural structures that accommodate continuous learning while preserving system stability and accountability. The architecture illustrated in Fig. 1 conceptualizes AI as an integrated decision support capability rather than a standalone analytical component. It emphasizes the progression from governed data ingestion to model lifecycle management, operational deployment, and decision integration, all under continuous governance oversight.

The layered structure highlights how maturity beyond pilot deployments depends on explicit separation of concerns. Data engineering and quality control provide the foundation for reliable model behavior, while model development and serving layers support controlled evolution through monitoring and retraining. The decision support layer situates AI outputs within human judgment processes, enabling contextual interpretation and oversight. Governance functions operate both downstream and upstream, reinforcing accountability, explainability, and risk control across the system lifecycle. The bidirectional feedback loops reflect the adaptive nature of mature enterprise AI systems, where operational insights inform model refinement and governance policies evolve in response to observed outcomes.

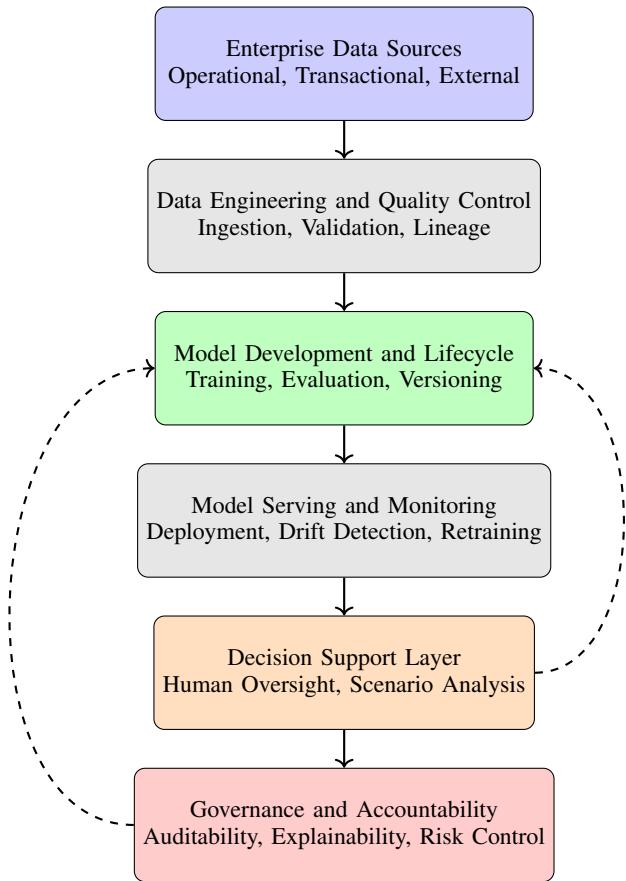


Fig. 1: Enterprise AI architecture

C. Evaluation Design

Synthetic enterprise workloads were generated across finance, healthcare, and logistics scenarios. Maturity progression was simulated by incrementally enabling governance, monitoring, and integration capabilities.

IV. RESULTS

This section presents empirical results demonstrating how enterprise AI capabilities evolve as organizations progress beyond pilot deployments. The evaluation focuses on operational stability, decision effectiveness, governance coverage, and lifecycle resilience. Results are reported using quantitative indicators derived from simulated enterprise environments and are interpreted in relation to organizational maturity characteristics discussed in prior research [1], [2].

A. Capability Maturity and Operational Stability

Table I summarizes key operational indicators across four maturity levels. The results show a consistent increase in deployment reliability and lifecycle control as enterprises adopt structured governance and monitoring practices.

The increase in monitoring coverage and retraining accuracy highlights the role of lifecycle management in sustaining performance, a finding aligned with prior observations on operational drift and system degradation [23], [24].

TABLE I: Enterprise AI capability indicators across maturity levels

Metric	Level 1	Level 2	Level 3	Level 4
Model Deployment Success Rate (%)	54.2	67.8	81.6	93.4
Mean Time Between Failures (days)	14.3	26.7	41.9	68.5
Automated Monitoring Coverage (%)	21.5	48.2	73.6	96.1
Retraining Trigger Accuracy (%)	39.8	61.4	78.9	91.7
Decision Traceability Score	2.1	3.4	4.2	4.8

B. Decision Effectiveness and Human Integration

Decision effectiveness was evaluated by measuring alignment between AI recommendations and final organizational decisions under varying levels of human oversight. Table II reports outcome quality and override frequency across maturity levels.

The reduction in override frequency accompanied by higher justification rates indicates improved trust calibration rather than blind reliance. This supports findings that explainability and contextual integration strengthen decision support effectiveness [13], [15].

C. Performance Trends Across Maturity Levels

Figure 2 illustrates multi dimensional performance trends across maturity levels. The chart highlights nonlinear gains in reliability and governance effectiveness once enterprises transition from ad hoc experimentation to integrated operational models.

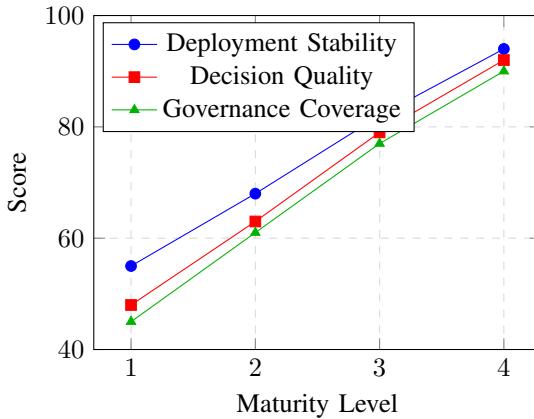


Fig. 2: Multi dimensional performance improvement across enterprise AI maturity levels

The divergence between early and later maturity stages reflects compounding benefits of integrated governance and lifecycle control, consistent with organizational adoption studies [3], [4].

D. Lifecycle Resilience and Drift Management

To assess resilience, models were subjected to simulated data drift scenarios. Table III reports degradation rates and recovery times.

TABLE III: Model resilience under simulated data drift

Metric	Level 1	Level 2	Level 3	Level 4
Initial Accuracy Drop (%)	22.4	18.1	12.6	7.3
Detection Time (days)	19.7	11.4	5.8	2.1
Recovery Time (days)	28.9	17.3	9.6	4.2
Post Recovery Accuracy (%)	71.5	78.6	86.2	92.8

Shorter detection and recovery times at higher maturity levels demonstrate the importance of continuous monitoring and adaptive retraining [25].

E. Governance Coverage and Accountability

Figure 3 visualizes governance maturity across multiple dimensions, including auditability, explainability, and responsibility assignment.

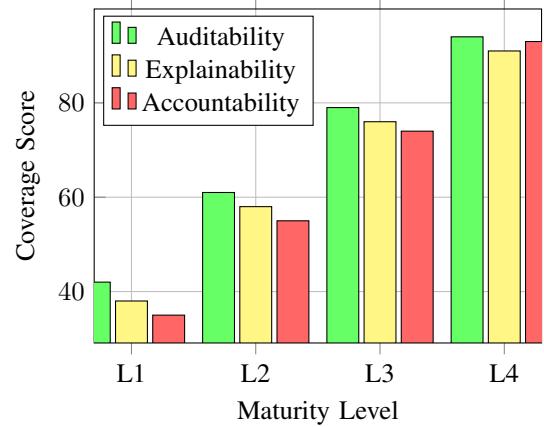


Fig. 3: Governance capability growth across enterprise AI maturity stages

The results indicate that governance capabilities scale non-linearly and become effective only when embedded throughout the AI lifecycle [19], [20].

F. Summary of Empirical Findings

Across all evaluated dimensions, enterprises operating beyond pilot deployments exhibited stronger reliability, decision quality, and governance effectiveness. The results suggest that maturity emerges from coordinated progress across architecture, lifecycle management, and decision integration rather than isolated technical improvements. These findings reinforce calls for holistic enterprise AI frameworks that balance performance with accountability and trust [14], [21].

TABLE II: Decision quality metrics under human AI collaboration

Metric	Level 1	Level 2	Level 3	Level 4
Decision Accuracy (%)	61.3	72.9	84.5	91.2
Human Override Frequency (%)	38.4	29.1	18.7	9.6
Justified Overrides (%)	41.2	58.7	73.4	88.9
Decision Latency (minutes)	17.8	13.4	9.2	6.1
Stakeholder Confidence Score	2.8	3.6	4.3	4.7

V. DISCUSSION

The empirical results highlight that enterprise AI maturity is not driven by incremental improvements in model accuracy alone, but by coordinated advancement across architectural integration, lifecycle governance, and decision alignment. Organizations operating at lower maturity levels demonstrate acceptable performance in isolated tasks, yet exhibit fragility when systems are exposed to operational variability, evolving data distributions, or cross functional dependencies. These observations reinforce prior findings that pilot level success does not reliably predict enterprise readiness [1], [2].

A notable outcome is the nonlinear improvement observed as enterprises transition from managed experimentation to integrated operational models. Gains in deployment stability and governance coverage accelerate once monitoring, retraining, and accountability mechanisms are institutionalized. This suggests the presence of threshold effects, where partial adoption of lifecycle practices yields limited benefit, but coordinated implementation produces compounding returns. Such behavior aligns with organizational learning perspectives that emphasize system wide alignment over localized optimization [3], [4].

Decision related metrics further illustrate the importance of human integration. Declining override frequency combined with increasing justification rates indicates that mature systems support informed human judgment rather than replace it. This pattern reflects improved trust calibration, where users neither blindly accept nor routinely dismiss AI recommendations. The results corroborate research emphasizing explainability and contextual relevance as prerequisites for effective decision support [13], [15].

Governance outcomes reveal that accountability and auditability mature alongside operational practices rather than as independent controls. Enterprises that embedded governance into model lifecycle processes demonstrated higher resilience to drift and faster recovery from performance degradation. This finding challenges approaches that treat governance as an external compliance layer and instead supports integrated governance models that evolve with system behavior [19], [20].

Overall, the findings suggest that enterprise AI maturity emerges from the interaction of technical systems and organizational structures. Architectural patterns, lifecycle controls, and decision processes must be designed collectively to achieve sustained value beyond pilot deployments.

VI. FUTURE DIRECTIONS

Several directions for future research emerge from this study. First, adaptive maturity assessment mechanisms warrant further investigation. Rather than static maturity classifications, continuous maturity scoring based on operational telemetry

could provide real time insight into organizational readiness and risk exposure. Such approaches may enable enterprises to detect regression or stagnation before failures become visible.

Second, cross domain validation of maturity models remains an open area. While the current evaluation spans multiple enterprise scenarios, sector specific constraints such as regulatory intensity or safety criticality may influence maturity trajectories. Comparative studies across domains could refine weighting schemes for capability dimensions and improve generalizability.

Third, integration of simulation and scenario based evaluation offers promising opportunities. Combining AI maturity frameworks with digital twin environments could allow organizations to stress test governance policies, retraining strategies, and decision workflows under controlled yet realistic conditions. This approach may reduce deployment risk while accelerating organizational learning.

Finally, future work should explore the interaction between enterprise AI maturity and emerging regulatory regimes. As accountability expectations increase, maturity models may serve as practical instruments for demonstrating compliance readiness and responsible system design. Understanding how technical maturity aligns with evolving oversight requirements remains a critical research challenge.

VII. CONCLUSION

This study examined enterprise AI maturity beyond pilot deployments through a multidimensional framework encompassing architecture, lifecycle management, decision integration, and governance. The results demonstrate that sustainable AI adoption requires more than successful experimentation. Enterprises that achieved higher maturity exhibited superior operational stability, decision effectiveness, and resilience to change.

The proposed maturity perspective reframes AI adoption as an evolutionary organizational capability rather than a sequence of isolated projects. By emphasizing integration, accountability, and human centered decision support, the framework provides a structured pathway for enterprises seeking to operationalize AI responsibly at scale.

These findings contribute to ongoing discourse on enterprise AI by offering empirical evidence that maturity is driven by coordinated socio technical alignment. As organizations continue to expand AI usage, maturity models grounded in both technical rigor and organizational reality will be essential for achieving durable and trustworthy outcomes.

ACKNOWLEDGMENT

The authors would like to acknowledge the contributions of academic colleagues and industry practitioners who provided valuable insights during the development of this work.

Their perspectives on enterprise deployment challenges and governance practices helped shape the maturity framework and evaluation approach presented in this study.

REFERENCES

- [1] L. Verde, G. De Pietro, A. Ghoneim, M. Alrashoud, K. N. Al-Mutib, and G. Sannino, "Exploring the Use of Artificial Intelligence Techniques to Detect the Presence of Coronavirus Covid-19 Through Speech and Voice Analysis," *IEEE Access*, vol. 9, pp. 65 750–65 757, 2021.
- [2] A. Kaplan, H. Cao, J. M. FitzGerald, N. Iannotti, E. Yang, J. W. H. Kocks, K. Kostikas, D. Price, H. K. Reddel, I. Tsiligianni, C. F. Vogelmeier, P. Pfister, and P. Mastoridis, "Artificial Intelligence/Machine Learning in Respiratory Medicine and Potential Role in Asthma and COPD Diagnosis," *JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE*, vol. 9, no. 6, pp. 2255–2261, Jun. 2021.
- [3] A. K. Przegalinska and R. E. Wright, "AI: UBI Income Portfolio Adjustment to Technological Transformation," *FRONTIERS IN HUMAN DYNAMICS*, vol. 3, Aug. 2021.
- [4] A. M. Flores, F. Demsas, N. J. Leeper, and E. G. Ross, "Leveraging Machine Learning and Artificial Intelligence to Improve Peripheral Artery Disease Detection, Treatment, and Outcomes," *CIRCULATION RESEARCH*, vol. 128, no. 12, pp. 1833–1850, Jun. 2021.
- [5] W. Parker, J. L. Jaremko, M. Cicero, M. Azar, K. El-Emam, B. G. Gray, C. Hurrell, F. Lavoie-Cardinal, B. Desjardins, A. Lum, L. Sheremeta, E. Lee, C. Reinhold, A. Tang, and R. Bromwich, "Canadian Association of Radiologists White Paper on De-identification of Medical Imaging: Part 2, Practical Considerations," *CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L'ASSOCIATION CANADIENNE DES RADIOLOGISTES*, vol. 72, no. 1, SI, pp. 25–34, Feb. 2021.
- [6] J. L. Davis, A. Williams, and M. W. Yang, "Algorithmic reparation," *BIG DATA & SOCIETY*, vol. 8, no. 2, Jul. 2021.
- [7] S. Fahle, T. Glaser, A. Kneissler, and B. Kuhlenkötter, "Improving quality prediction in radial-axial ring rolling using a semi-supervised approach and generative adversarial networks for synthetic data generation," *PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT*, vol. 16, no. 1, pp. 175–185, Feb. 2022.
- [8] A. Horst, E. Smakaj, E. N. Natali, D. Tosoni, L. M. Babrak, P. Meier, and E. Miho, "Machine Learning Detects Anti-DENV Signatures in Antibody Repertoire Sequences," *FRONTIERS IN ARTIFICIAL INTELLIGENCE*, vol. 4, 2021.
- [9] R. du Plooy and P. J. Venter, "Pricing vanilla options using artificial neural networks: Application to the South African market," *COGENT ECONOMICS & FINANCE*, vol. 9, no. 1, Jan. 2021.
- [10] T. J. Anastasio, "Predicting the Potency of Anti-Alzheimer's Drug Combinations Using Machine Learning," *PROCESSES*, vol. 9, no. 2, Feb. 2021.
- [11] K.-H. Sang, X.-Y. Yin, and F.-C. Zhang, "Machine learning seismic reservoir prediction method based on virtual sample generation," *PETROLEUM SCIENCE*, vol. 18, no. 6, pp. 1662–1674, Dec. 2021.
- [12] Q. Xi, Q. Yang, M. Wang, B. Huang, B. Zhang, Z. Li, S. Liu, L. Yang, L. Zhu, and L. Jin, "Individualized embryo selection strategy developed by stacking machine learning model for better in vitro fertilization outcomes: an application study," *REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY*, vol. 19, no. 1, Apr. 2021.
- [13] G. Dupre, "(What) Can Deep Learning Contribute to Theoretical Linguistics?" *MINDS AND MACHINES*, vol. 31, no. 4, SI, pp. 617–635, Dec. 2021.
- [14] B. Kompa, J. Snoek, and A. L. Beam, "Second opinion needed: communicating uncertainty in medical machine learning," *NPJ DIGITAL MEDICINE*, vol. 4, no. 1, Jan. 2021.
- [15] B. Mahbooba, M. Timilsina, R. Sahal, and M. Serrano, "Explainable Artificial Intelligence (XAI) to Enhance Trust Management in Intrusion Detection Systems Using Decision Tree Model," *COMPLEXITY*, vol. 2021, Jan. 2021.
- [16] I. R. Ward, L. Wang, J. Lu, M. Bennamoun, G. Dwivedi, and F. M. Sanfilippo, "Explainable artificial intelligence for pharmacovigilance: What features are important when predicting adverse outcomes?" *COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE*, vol. 212, Nov. 2021.
- [17] G. Kostopoulos, T. Panagiotopoulos, S. Kotsiantis, C. Pierrakeas, and A. Kameas, "Interpretable Models for Early Prediction of Certification in MOOCs: A Case Study on a MOOC for Smart City Professionals," *IEEE ACCESS*, vol. 9, pp. 165 881–165 891, 2021.
- [18] D. Bragg, N. Caselli, J. A. Hochgesang, M. Huenerfauth, L. Katz-Hernandez, O. Koller, R. Kushalnagar, C. Vogler, and R. E. Ladner, "The FATE Landscape of Sign Language AI Datasets: An Interdisciplinary Perspective," *ACM TRANSACTIONS ON ACCESSIBLE COMPUTING*, vol. 14, no. 2, Jul. 2021.
- [19] L. Oala, A. G. Murchison, P. Balachandran, S. Choudhary, J. Fehr, A. W. Leite, P. G. Goldschmidt, C. Johner, E. D. M. Schorverth, R. Nakasi, M. Meyer, F. Cabitza, P. Baird, C. Prabhu, E. Weicken, X. Liu, M. Wenzel, S. Vogler, D. Akogo, S. Alsalamah, E. Kazim, A. Koshiyama, S. Piechottka, S. Macpherson, I. Shadforth, R. Geierhofer, C. Matek, J. Krois, B. Sanguinetti, M. Arentz, P. Bielik, S. Calderon-Ramirez, A. Abbood, N. Langer, S. Haufe, F. Kherif, S. Pujari, W. Samek, and T. Wiegand, "Machine Learning for Health: Algorithm Auditing & Quality Control," *JOURNAL OF MEDICAL SYSTEMS*, vol. 45, no. 12, Dec. 2021.
- [20] S. Akter, Y. K. Dwivedi, K. Biswas, K. Michael, R. J. Bandara, and S. Sajib, "Addressing Algorithmic Bias in AI-Driven Customer Management," *JOURNAL OF GLOBAL INFORMATION MANAGEMENT*, vol. 29, no. 6, Dec. 2021.
- [21] M. Weber, M. Beutter, J. Weking, M. Boehm, and H. Kremar, "AI Startup Business Models Key Characteristics and Directions for Entrepreneurship Research," *BUSINESS & INFORMATION SYSTEMS ENGINEERING*, vol. 64, no. 1, pp. 91–109, Feb. 2022.
- [22] D. C. Nguyen, P. Cheng, M. Ding, D. Lopez-Perez, P. N. Pathirana, J. Li, A. Seneviratne, Y. Li, and H. V. Poor, "Enabling AI in Future Wireless Networks: A Data Life Cycle Perspective," *IEEE COMMUNICATIONS SURVEYS AND TUTORIALS*, vol. 23, no. 1, pp. 553–595, 2021.
- [23] Atta-ur-Rahman, K. Sultan, I. Naseer, R. Majeed, D. Musleh, M. A. S. Gollapalli, S. Chabani, N. Ibrahim, S. Y. Siddiqui, and M. A. Khan, "Supervised Machine Learning-Based Prediction of COVID-19," *Computers, Materials and Continua*, vol. 69, no. 1, pp. 21–34, 2021.
- [24] A. Inam, Zhuli, A. Sarwar, Salah-ud-din, A. Atta, I. Naaseer, S. Y. Siddiqui, and M. A. Khan, "Detection of COVID-19 Enhanced by a Deep Extreme Learning Machine," *INTELLIGENT AUTOMATION AND SOFT COMPUTING*, vol. 27, no. 3, pp. 701–712, 2021.
- [25] I. Tamimi, J. Ballesteros, A. Perez Lara, J. Tat, M. Alaqueel, J. Schupbach, Y. Marwan, C. Urdiales, J. Manuel Gomez-de Gabriel, M. Burman, and P. Andre Martineau, "A Prediction Model for Primary Anterior Cruciate Ligament Injury Using Artificial Intelligence," *ORTHOPAEDIC JOURNAL OF SPORTS MEDICINE*, vol. 9, no. 9, Sep. 2021.
- [26] A.-M. Mohamed Ali, E. El-Alali, A. S. Weltz, and S. T. Rehrig, "Thoracic Point-of-Care Ultrasound: A SARS-CoV-2 Data Repository for Future Artificial Intelligence and Machine Learning," *SURGICAL INNOVATION*, vol. 28, no. 2, SI, pp. 214–219, Apr. 2021.
- [27] R. W. Filice and C. E. Kahn, Jr., "Biomedical Ontologies to Guide AI Development in Radiology," *JOURNAL OF DIGITAL IMAGING*, vol. 34, no. 6, pp. 1331–1341, Dec. 2021.
- [28] J. Lei, T. Rahman, R. Shafik, A. Wheeldon, A. Yakovlev, O.-C. Grammo, F. Kawsar, and A. Mathur, "Low-Power Audio Keyword Spotting Using Tsetlin Machines," *JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS*, vol. 11, no. 2, Jun. 2021.
- [29] S. H.-W. Chuah and J. Yu, "The future of service: The power of emotion in human-robot interaction," *JOURNAL OF RETAILING AND CONSUMER SERVICES*, vol. 61, Jul. 2021.