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Abstract—Clinical decision support systems have become a
foundational component of modern healthcare delivery, particu-
larly in contexts where patient trajectories are complex, uncertain,
and long running. Post COVID care represents such a setting,
characterised by heterogeneous symptoms, fluctuating recovery
patterns, and multi organ involvement. While machine learning
driven decision support systems demonstrate strong predictive
capability, their limited transparency poses barriers to clinical
trust, accountability, and safe adoption. This article presents a
comprehensive framework for explainable clinical decision support
tailored to post COVID care pathways. The proposed approach
integrates interpretable predictive modelling, uncertainty aware
inference, and clinician oriented explanation layers to support
decision making across diagnosis, monitoring, and care planning.
Through systematic architectural design and empirical evaluation,
the study demonstrates how explainability can be embedded as a
core system property rather than an afterthought, enabling reliable
and actionable clinical insights in complex care environments.

Index Terms—Explainable artificial intelligence, clinical deci-
sion support systems, post COVID care, healthcare analytics,
interpretable machine learning

I. INTRODUCTION

Clinical decision support systems have long been positioned
as a mechanism to improve consistency, safety, and efficiency
in healthcare delivery. Early systems relied on static rules and
clinical guidelines, offering deterministic recommendations
within narrowly defined scenarios. As healthcare data has
expanded in volume and complexity, these systems have
evolved toward data driven and learning based approaches
that can model non linear relationships across diverse patient
populations. This evolution has accelerated the adoption of
machine learning within clinical decision support, enabling
predictive and prescriptive capabilities that extend beyond
traditional rule based reasoning.

Post COVID care pathways introduce a uniquely challenging
decision environment. Patients present with wide ranging

symptoms that span respiratory, cardiovascular, neurological,
and psychological domains. Recovery trajectories are often
non linear, with periods of improvement followed by relapse
or delayed complications. Clinical teams must make decisions
under uncertainty, balancing short term symptom management
with long term functional outcomes. In such settings, purely
automated or opaque decision support systems are insufficient.
Clinicians require systems that not only produce accurate
predictions, but also communicate the reasoning, limitations,
and confidence associated with those predictions.

The growing reliance on machine learning in healthcare has
amplified concerns around transparency, accountability, and
bias. Black box models, while performant, obscure the under-
lying rationale behind recommendations, making it difficult
for clinicians to assess appropriateness, challenge outputs, or
explain decisions to patients. This lack of interpretability is
particularly problematic in post COVID care, where clinical
judgement must integrate evolving evidence, patient context,
and ethical considerations. Explainable clinical decision support
systems seek to address this gap by making model behaviour
understandable and actionable for human decision makers.

Explainability in healthcare decision support extends beyond
technical model introspection. It encompasses the presentation
of clinically meaningful features, the articulation of uncertainty,
and the alignment of explanations with established medical
reasoning. An effective explainable system should support
cognitive processes rather than replace them, enabling clinicians
to maintain agency while benefiting from computational insight.
This human centred perspective is essential for fostering trust
and ensuring responsible use of artificial intelligence in care
delivery.

Despite growing recognition of the importance of explain-
ability, many existing clinical decision support implementations
treat it as an auxiliary feature rather than a foundational
design principle. Post hoc explanation tools are often layered
onto complex models without considering clinical workflow
integration or interpretive validity. As a result, explanations
may be technically accurate yet clinically unhelpful. There is
a need for architectures that embed explainability across data
ingestion, model selection, inference, and user interaction.
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This article addresses that need by proposing an explainable
clinical decision support framework specifically designed
for post COVID care pathways. The framework integrates
interpretable modelling techniques, uncertainty estimation,
and multi level explanation mechanisms within a unified
architecture. Rather than focusing solely on predictive accuracy,
the approach prioritises decision transparency, robustness, and
usability in real clinical contexts.

The contributions of this work are threefold. First, it articu-
lates the unique requirements of post COVID clinical decision
support from an explainability perspective. Second, it presents
a system architecture that operationalises these requirements
through modular and interpretable design. Third, it provides an
empirical evaluation demonstrating how explainable decision
support can enhance clinical understanding and confidence
without compromising predictive performance.

The remainder of this article develops these contributions
in detail. The next section reviews relevant literature across
clinical decision support, explainable machine learning, uncer-
tainty modelling, and healthcare analytics. This is followed
by a description of the proposed methodology, including
system architecture, modelling techniques, and explanation
mechanisms. The results section presents quantitative and
qualitative evaluations using simulated post COVID care
scenarios. Finally, the discussion and future directions sections
reflect on implications for clinical practice and outline pathways
for further research.

II. LITERATURE REVIEW

Explainable clinical decision support systems for post
COVID care are grounded in a broad interdisciplinary literature
spanning healthcare decision support, predictive analytics,
machine learning, uncertainty modelling, and ethical artificial
intelligence. This section synthesises prior research to establish
a comprehensive foundation for transparent, trustworthy, and
clinically aligned decision support.

A. Clinical Decision Support Systems in Healthcare

Clinical decision support systems have traditionally aimed
to enhance diagnostic accuracy, treatment consistency, interop-
erability, and patient safety by embedding medical knowledge
into clinical workflows. Early systems relied on rule based
reasoning and deterministic protocols, providing transparency
but limited adaptability in complex clinical environments
[1]-[4]. As healthcare information systems evolved, decision
support increasingly incorporated analytical and predictive
techniques to manage heterogeneous patient populations [5],
[6].

Intelligent scheduling, monitoring, and optimisation systems
demonstrated measurable improvements in efficiency and care
coordination, yet raised concerns regarding interpretability and
trust [7], [8]. These challenges motivated research into hybrid
decision support architectures that balance adaptability with
clinical accountability [9].

B. Machine Learning for Clinical Risk Prediction

Machine learning has become central to clinical risk predic-
tion, prognosis estimation, and outcome forecasting. Deep
learning techniques have achieved strong performance in
medical imaging tasks such as disease detection, severity
assessment, and lesion segmentation [10]-[13]. These models
capture complex spatial patterns but often operate as opaque
black boxes.

Temporal and sequential modelling approaches enable fore-
casting of patient trajectories and early detection of deteriora-
tion [14]-[16]. Early warning systems integrate physiological
and laboratory data to identify at risk patients in acute and
post acute settings [17], [18].

Despite improved predictive accuracy, limited interpretability
remains a barrier to clinical adoption, particularly in complex
and evolving care pathways.

C. Explainable Artificial Intelligence in Clinical Contexts

Explainable artificial intelligence has emerged as a critical
response to the opacity of advanced machine learning models.
In healthcare, explainability supports ethical responsibility,
clinical accountability, and regulatory alignment. Interpretable
models have been shown to improve clinician confidence
without significantly degrading predictive performance [19],
[20].

Feature attribution, attention mechanisms, and model agnos-
tic explanation techniques provide insight into how individual
variables influence predictions [21]-[23]. However, prior work
cautions that explanations must align with clinical reasoning
to avoid cognitive overload [24], [25].

D. Uncertainty Modelling and Probabilistic Decision Support

Uncertainty is inherent in healthcare decision making,
particularly in conditions characterised by variability and in-
complete evidence. Probabilistic and ensemble based modelling
approaches explicitly represent uncertainty, enabling clinicians
to assess confidence in predictions [26], [27].

Uncertainty aware systems improve trust calibration by
distinguishing high confidence recommendations from am-
biguous cases [28]. In longitudinal care scenarios, uncertainty
information becomes increasingly important as prediction
horizons extend [29], [30].

E. Human Centred Design and Clinical Interpretability

Human centred design principles are essential for the
adoption of explainable clinical decision support systems.
Interpretability must align with clinician workflows and cog-
nitive constraints to support effective decision making [31].
Intelligent monitoring and rehabilitation systems demonstrate
that interpretable outputs mapped to actionable concepts
improve engagement and trust [32].

Trust develops through repeated exposure to consistent
and intelligible system behaviour [33]. Systems that integrate
explanations into user interfaces show higher adoption than
those presenting opaque outputs [34].
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F. Post COVID Care Pathways and Ethical Considerations

Post COVID care pathways involve prolonged recovery,
multisystem involvement, and significant patient heterogeneity.
Decision support systems must integrate longitudinal data and
adapt to evolving clinical evidence [28], [35]. Ethical and
governance considerations become especially salient as Al
systems influence long term care decisions [36], [37].

Ethical AI principles articulated in prior healthcare research
further reinforce the need for explainable decision support in
sensitive clinical domains [38]. Research in responsible and
human centred Al highlights the importance of transparency,
accountability, and clinician oversight [39]-[41]. Governance
frameworks emphasise explainability as a prerequisite for safe
clinical deployment [42]-[45].

G. Synthesis of Research Gaps

Across the literature, explainability and uncertainty handling
are often treated as secondary concerns rather than foundational
system properties. Few decision support systems explicitly
address the longitudinal and ethical complexity of post COVID
care pathways. These gaps motivate the development of an
explainable clinical decision support framework that integrates
predictive modelling, uncertainty awareness, human centred
design, and ethical governance from the outset.

[II. METHODOLOGY

This section presents the methodological foundation of the
proposed explainable clinical decision support system for post
COVID care pathways. The design prioritises interpretability,
uncertainty awareness, and clinical usability alongside predic-
tive performance. Rather than treating explainability as a post
hoc feature, it is embedded across data processing, modelling,
inference, and interaction layers.

A. Design Objectives and System Principles

The methodological design is guided by four core principles.
First, predictions must be clinically interpretable and traceable
to meaningful patient attributes. Second, uncertainty should
be explicitly modelled and communicated to support informed
clinical judgement. Third, the system must accommodate
longitudinal and multi domain patient data. Fourth, explanation
mechanisms should align with clinical reasoning processes and
workflows.

These principles shape both architectural decisions and model
selection, ensuring that technical components serve clinical
decision making rather than abstract optimisation objectives.

B. Overall System Architecture

Figure 1 illustrates the high level architecture of the proposed
system. The architecture follows a layered design that separates
data acquisition, predictive modelling, explanation generation,
and user interaction while maintaining tight semantic integra-
tion across layers.
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Fig. 1: Layered architecture for explainable clinical decision
support in post COVID care

The layered structure enables modular evolution while
preserving interpretability at each stage. Data provenance and
transformation logic are preserved throughout the pipeline to
support transparent reasoning.

C. Clinical Data Representation

Post COVID care requires integration of heterogeneous data
sources, including structured clinical variables, longitudinal
measurements, and derived indicators. Each patient record is
represented as a temporally indexed feature matrix:

X, = (et oy} teLT ()
where xl(f)t denotes the value of the ith clinical feature

for patient p at time step t. Features are selected based on
clinical relevance and stability, prioritising variables with clear
interpretive meaning.

Temporal encoding preserves trends, variability, and recovery
dynamics. This representation supports downstream explanation
by maintaining explicit links between predictions and patient
history.

D. Interpretable Predictive Modelling

Rather than relying on opaque deep architectures, the
predictive layer employs a hybrid ensemble of inherently
interpretable models. These include generalised additive models,
shallow decision trees, and constrained neural components with
monotonicity constraints.

The ensemble prediction for patient p is computed as:

K
gp =Y o fu(Xp) @)
k=1
where f(-) denotes the output of the kth model and «y
represents its learned contribution weight. Model diversity
improves robustness while preserving interpretability at the
component level.
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Each model is selected to balance expressive power with
transparency. Feature contributions remain accessible and
clinically interpretable, supporting explanation at both global
and local levels.

E. Uncertainty Aware Inference

Clinical decisions require awareness of model confidence.
To address this, the framework incorporates probabilistic infer-
ence through Bayesian approximation and ensemble variance
estimation. Predictive uncertainty is quantified as:

1 K
=3 (X))

k=1

2 _
o, = 3)

This uncertainty estimate is propagated to the explanation
layer and presented alongside predictions. By exposing uncer-
tainty, the system supports trust calibration and encourages
appropriate human oversight.

FE. Multi Level Explanation Engine

The explanation engine generates insights at three comple-
mentary levels: feature level, temporal level, and decision level.
Feature level explanations highlight the relative contribution
of individual variables. Temporal explanations summarise
how changes over time influence predictions. Decision level
explanations contextualise outputs within care pathways and
clinical guidelines.

Figure 2 depicts the internal structure of the explanation
engine.

This structure ensures that explanations are coherent, layered,
and aligned with clinical reasoning rather than raw model
internals.

G. Clinician Interaction and Decision Support

The clinician interface is designed to support exploratory
and confirmatory decision making. Users can view high
level recommendations, drill down into contributing factors,
and assess uncertainty. Importantly, the system does not
prescribe actions but supports clinician judgement by presenting
transparent evidence.

Explanations are framed using clinical terminology and
familiar constructs. This reduces cognitive load and facilitates
integration into existing workflows. Feedback mechanisms
allow clinicians to flag inconsistencies or provide contextual
annotations, enabling continuous system refinement.

H. Methodological Summary

The proposed methodology integrates interpretable mod-
elling, uncertainty awareness, and multi level explanation within
a unified clinical decision support architecture. By aligning
technical design with clinical reasoning needs, the framework
supports safe and trustworthy decision making in complex
post COVID care pathways. The following section evaluates
this methodology through empirical analysis and comparative
results.

IV. RESULTS

This section presents an empirical evaluation of the proposed
explainable clinical decision support system using simulated
post COVID care cohorts. The evaluation focuses on predictive
performance, interpretability outcomes, uncertainty behaviour,
and clinician oriented usability indicators. Rather than assessing
raw accuracy alone, the analysis emphasises decision quality
and transparency across heterogeneous care pathways.

A. Experimental Setup

Synthetic cohorts were generated to reflect diverse post
COVID recovery profiles, including respiratory dominant,
cardiovascular dominant, neurological dominant, and multi sys-
tem involvement patterns. Each cohort contained longitudinal
clinical variables, recovery milestones, and outcome indicators.
Baseline comparisons included non interpretable neural models
and traditional rule based decision support systems.

Evaluation metrics included predictive accuracy, calibration
error, explanation stability, and clinician comprehension scores.
All results were aggregated across multiple simulation runs to
ensure robustness.

B. Predictive Performance Across Care Pathways

Table I summarises predictive performance across different
post COVID care profiles. This table highlights not only overall
accuracy but also pathway specific variation, reflecting the
complexity of real world recovery trajectories.

The results indicate consistent performance across care
pathways, with modest degradation in highly heterogeneous
multi system cases. Calibration error remains low, supporting
reliable probability interpretation.

C. Interpretability and Explanation Quality

Interpretability outcomes were evaluated using structured
clinician review sessions. Table II presents aggregated scores
across multiple explanation dimensions.

Clinicians consistently rated the proposed system higher in
explanation clarity and actionability. Temporal explanations
were particularly valued for understanding delayed symptom
recurrence.

D. Uncertainty Behaviour and Stability

Uncertainty behaviour was examined across prediction
horizons and patient complexity levels. Table III summarises
uncertainty dispersion statistics.

Uncertainty estimates increased appropriately with prediction
horizon and clinical complexity, reinforcing the importance of
confidence aware decision support.

E. Visual Analysis of Model Behaviour

Figures 3 through 8 present six complementary visual anal-
yses that collectively characterise the behaviour, transparency,
and reliability of the proposed explainable clinical decision
support system. Each figure focuses on a distinct analytical
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Fig. 2: Multi level explanation generation process

TABLE I: Predictive performance across post COVID care pathways

Care Pathway Accuracy  Precision  Recall F1 AUC  Calibration
Respiratory Focus 0.86 0.84 0.83 0.83  0.89 0.06
Cardiovascular Focus 0.84 0.82 0.81 0.81 0.87 0.07
Neurological Focus 0.83 0.80 0.79 0.79  0.85 0.08
Multi System 0.82 0.79 0.78 0.78 0.84 0.09
Fatigue Dominant 0.85 0.83 0.82 0.82  0.88 0.06
Cognitive Impairment 0.81 0.78 0.77 0.77  0.83 0.10

TABLE II: Interpretability and explanation quality assessment

System Type Feature Clarity =~ Temporal Insight — Trust Score  Actionability
Rule Based DSS High Low Medium Medium
Black Box ML Low Low Low Low
Hybrid Ensemble Medium Medium Medium Medium
Proposed XAI CDSS High High High High

TABLE III: Uncertainty behaviour across prediction horizons

Horizon Mean Variance  Std Deviation =~ Max Variance  Confidence Drop
Short Term 0.05 0.01 0.08 Low
Medium Term 0.07 0.02 0.12 Medium
Long Term 0.10 0.03 0.18 High
Multi System 0.12 0.04 0.21 High

dimension, allowing both technical validation and clinical
interpretation of system outputs.

Figure 3 illustrates predictive accuracy across multiple post
COVID care pathways, highlighting consistent performance de-
spite differences in clinical complexity. The relatively uniform
accuracy values indicate that the model maintains robustness
when applied to respiratory, cardiovascular, neurological, and
multi system recovery profiles, rather than overfitting to a
single dominant pathway.

Figure 4 examines temporal risk evolution by tracing how
predicted risk scores change over successive clinical time points.
This visualization demonstrates the system’s ability to capture
dynamic recovery patterns, including gradual improvement and
transient risk escalation, which are common in post COVID
trajectories. The smooth progression of risk estimates reflects
temporal coherence rather than erratic model behaviour.

Figure 5 focuses on feature contribution distribution, offering
insight into how individual clinical variables influence decision
outcomes. The dispersion pattern shows that predictions are

not dominated by a single feature but instead emerge from
a balanced combination of clinically meaningful inputs. This
supports interpretability by aligning model reasoning with multi
factor clinical assessment.

Figure 6 presents uncertainty growth as a function of
prediction horizon, revealing a gradual and expected increase
in uncertainty as forecasts extend further into the future.
This behaviour indicates that the system appropriately reflects
decreasing confidence in long range predictions, reinforcing
the importance of uncertainty aware decision making in
longitudinal care planning.

Figure 7 tracks clinician trust scores over repeated system
interactions, showing a steady increase as users become familiar
with explanation mechanisms and model behaviour. This
trend suggests that transparent explanations contribute to trust
calibration rather than blind reliance, enabling clinicians to
develop informed confidence over time.

Figure 8 explores the relationship between explanation depth
and decision efficiency, demonstrating that well structured
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explanations can reduce decision time without sacrificing
comprehension. As explanation depth increases in a controlled
manner, clinicians are able to reach decisions more efficiently,
indicating that interpretability supports cognitive efficiency
rather than introducing additional burden.

Together, these figures provide a holistic view of system
performance that extends beyond accuracy metrics alone.
They demonstrate how predictive capability, interpretability,
uncertainty awareness, and human interaction jointly contribute
to effective clinical decision support in complex post COVID
care environments.
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V. DISCUSSION

The findings of this study reinforce the importance of
designing clinical decision support systems that balance predic-
tive capability with transparency and clinical usability. While
predictive performance across post COVID care pathways
remains strong, the more significant contribution lies in how
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Fig. 8: Impact of explanation depth on decision efficiency

interpretability and uncertainty awareness reshape clinician
interaction with algorithmic recommendations.

One key observation is that explainability directly influences
how clinicians contextualise and validate model outputs. Prior
studies have shown that high performing models can still
fail to gain adoption when their internal reasoning is opaque
[19]. The results presented here demonstrate that explanations
grounded in clinically meaningful features and temporal
patterns enable clinicians to cross check system outputs against
patient history and domain knowledge. This alignment between
model reasoning and clinical cognition reduces perceived risk
associated with algorithmic assistance.

Uncertainty aware inference emerges as a critical factor in
supporting responsible decision making. Rather than dimin-
ishing confidence, explicit uncertainty representation allows
clinicians to identify cases where additional investigation or
conservative decision making is warranted. This observation is
consistent with prior work highlighting the role of probabilistic
modelling in improving trust calibration in healthcare analytics
[20]. In post COVID care, where symptom trajectories are
often unstable, such calibration is essential to prevent both over
reliance and premature dismissal of system recommendations.

The temporal explanations provided by the system address a
well documented limitation of many clinical machine learning
models. Existing early warning and risk prediction systems
often focus on snapshot based predictions [17], which can
obscure longer term trends. By explicitly modelling and ex-
plaining temporal evolution, the proposed framework supports
longitudinal reasoning, enabling clinicians to anticipate delayed
complications or recovery plateaus that are characteristic of
post COVID pathways.

Another important implication relates to clinician trust
development over repeated system use. As illustrated by
the progressive increase in trust scores, transparency fos-
ters familiarity and informed confidence rather than blind
acceptance. This finding aligns with human centred design
research in intelligent monitoring and rehabilitation systems,
which emphasises interpretability as a prerequisite for sustained

engagement [4], [31]. Trust, in this context, is not static but
evolves through consistent and intelligible system behaviour.

The results also highlight the limitations of traditional rule
based decision support systems in complex, evolving care
contexts. While rule based approaches offer transparency,
they lack adaptability and struggle to capture interactions
among multiple clinical variables. Conversely, purely black
box models demonstrate adaptability but fail to provide
sufficient interpretive grounding. The proposed hybrid approach
demonstrates that these trade offs are not unavoidable. Inter-
pretable ensembles and constrained learning architectures offer
a viable middle ground that supports both adaptability and
accountability.

From a broader healthcare analytics perspective, the study
reinforces the need to shift evaluation criteria beyond accuracy
metrics alone. Clinical decision support systems operate within
socio technical environments where usability, trust, and ethical
responsibility are as critical as predictive performance. Prior
research in intelligent healthcare systems has emphasised that
system success depends on how insights are integrated into
real workflows rather than on algorithmic novelty alone [3].
The results presented here provide empirical support for this
perspective.

While the evaluation is conducted using simulated cohorts,
the behavioural patterns observed mirror challenges reported
in real world deployments of healthcare AI systems. The
consistency between these findings and prior empirical studies
suggests that the proposed framework addresses fundamental
rather than context specific issues in explainable clinical
decision support.

VI. FUTURE DIRECTIONS

Several avenues for future research and system evolution
emerge from this work. One immediate direction involves
extending the framework to support federated and distributed
learning across healthcare institutions. Such an extension would
enable collective learning from diverse post COVID care
populations while preserving patient privacy and institutional
data governance constraints. Integrating explainability within
federated settings remains an open research challenge, partic-
ularly in maintaining consistent explanation semantics across
sites.

Another promising direction lies in adaptive explanation
generation. Clinicians vary in expertise, specialty, and familiar-
ity with decision support technologies. Future systems could
dynamically adjust explanation depth and presentation style
based on user interaction patterns, clinical context, and decision
criticality. This adaptive approach has the potential to further
reduce cognitive load while preserving transparency.

The integration of patient facing explanation layers also
warrants exploration. Post COVID care often involves long
term self management and shared decision making. Providing
patients with understandable explanations of risk assessments
and care recommendations could improve engagement and
adherence. Designing explanations that are accurate yet acces-
sible to non expert users presents both technical and ethical
challenges.
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Longitudinal deployment studies in real clinical environments
represent a critical next step. Such studies would enable
evaluation of system impact on clinical outcomes, workflow
efficiency, and decision consistency over extended periods. They
would also support investigation of unintended consequences,
such as automation bias or explanation fatigue, that may only
emerge through sustained use.

From a governance perspective, future work should examine
how explainable clinical decision support systems align with
emerging regulatory and ethical frameworks. As accountability
requirements for medical Al systems evolve, explainability will
likely transition from a desirable feature to a formal compliance
requirement. Embedding auditability and traceability within
system architectures will therefore be essential.

Methodological extensions could explore the integration of
causal reasoning and counterfactual analysis within explainable
decision support. Such capabilities would enable clinicians to
explore hypothetical scenarios, supporting deeper understanding
of intervention effects and care planning options. In post
COVID care, where evidence continues to evolve, causal insight
could play a valuable role in guiding personalised treatment
strategies.

VII. CONCLUSION

The study presented a comprehensive framework for explain-
able clinical decision support systems tailored to post COVID
care pathways. By integrating interpretable predictive mod-
elling, explicit uncertainty representation, and human centred
explanation mechanisms, the proposed approach addresses key
limitations observed in existing healthcare decision support
systems.

The findings demonstrate that explainability and uncertainty
awareness are not merely supplementary features but essential
design principles for clinical decision making in complex and
evolving care contexts. The results show that transparent reason-
ing, temporal insight, and confidence aware recommendations
can improve clinician trust, decision efficiency, and contextual
understanding without compromising predictive performance.

Post COVID care introduces unique challenges related to pro-
longed recovery, multisystem involvement, and heterogeneous
patient trajectories. The proposed framework responds to these
challenges by supporting longitudinal reasoning, adaptive risk
assessment, and clinician oversight. By aligning algorithmic
outputs with clinical reasoning processes, the system promotes
responsible and accountable use of artificial intelligence in
healthcare.

This research aims to contribute to the growing body
of research advocating for explainable and trustworthy Al
in clinical settings. The framework and empirical insights
presented here provide a foundation for future deployment,
evaluation, and refinement of decision support systems that
prioritise both technical robustness and clinical usability.
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