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Abstract—Machine learning systems are increasingly used to
infer mental health conditions, emotional states, and behavioral
patterns from digital traces such as text, speech, physiological
signals, and interaction logs. While these systems promise
scalable and early mental health insights, they also introduce
significant ethical risks related to bias, privacy, interpretability,
and potential harm. This article investigates ethical and bias-
aware machine learning frameworks for mental health and
behavioral analytics. We analyze common sources of bias across
data, model design, and deployment contexts, and examine how
they affect fairness and reliability in mental health inference.
Building on recent advances in deep learning, natural language
processing, and affective computing, we propose a multi-layered
ethical machine learning architecture that integrates bias detection,
fairness constraints, and explainability mechanisms. Empirical
evaluations using representative behavioral datasets demonstrate
that incorporating ethical controls improves robustness and
reduces disparity across demographic groups while maintaining
predictive performance. The findings highlight the necessity
of embedding ethical considerations directly into the machine
learning lifecycle for responsible mental health analytics.

Index Terms—Ethical Al, bias-aware learning, mental health
analytics, behavioral modeling, fairness, explainable machine
learning

I. INTRODUCTION

The growing availability of digital behavioral data has
enabled machine learning models to infer psychological states
such as depression, stress, emotional valence, and cognitive

engagement. Social media posts, mobile sensing data, wearable
signals, and online interaction logs are increasingly analyzed to
support mental health screening and behavioral insights. Deep
learning models have shown strong performance in extracting
complex patterns from such data, including sequential and
multi-modal representations [1]-[3].

Despite these advances, mental health analytics presents
unique ethical challenges. Behavioral data is deeply personal,
context-sensitive, and often reflects vulnerable populations. Bias
introduced through unbalanced datasets, cultural assumptions,
or opaque models can lead to misclassification and unfair
outcomes. For example, linguistic markers of depression may
vary significantly across demographics, languages, and socio-
economic contexts [4], [5]. Without bias-aware mechanisms,
machine learning systems risk reinforcing existing inequalities.

This article addresses the need for ethical and bias-aware
machine learning in mental health and behavioral analytics.
The contributions are threefold. First, we provide a structured
review of relevant machine learning approaches and ethical
risks. Second, we propose an integrated architecture that
embeds fairness, transparency, and accountability into the
modeling pipeline. Third, we empirically evaluate the impact
of ethical constraints on model performance and fairness using
representative behavioral datasets.

II. LITERATURE REVIEW

Ethical and bias-aware machine learning for mental health
and behavioral analytics sits at the intersection of predictive
modeling, human centered decision support, and responsible
data practice. Prior work across behavioral prediction, affect
recognition, and healthcare analytics provides both technical
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building blocks and cautionary lessons about reliability, general-
ization, and unintended harm. This review groups the literature
into thematic areas that inform the design choices in bias-aware
mental health systems.

A. Digital behavioral signals for mental health inference

A substantial body of work demonstrates that mental health
indicators can be inferred from digital traces such as online text,
interaction patterns, and temporal activity signals. Predictive
approaches on behavioral data often rely on sequence modeling
to capture how symptoms or signals evolve over time. Recurrent
and gated architectures have been used to model temporal
dependencies for classification tasks where the target signal is
sparse and noisy [2], [6]. Related studies show that performance
gains often come from careful representation learning and
regularization rather than model depth alone, especially when
data distributions shift across cohorts [7]-[9].

Work on prediction tasks with limited labels highlights a
recurring risk: improvements on aggregate metrics can hide
systematic errors on minority subgroups. This is common
in settings where training samples over-represent particular
demographics or behavioral contexts. As a result, the same
modeling choices that boost accuracy can increase disparity if
the learning objective does not account for group wise reliability
[10], [11]. These findings motivate fairness constraints and
model diagnostics tailored to vulnerable populations.

B. Text, sentiment, and personality signals

Text driven mental health analytics frequently uses sentiment,
emotion, and linguistic markers. Sentiment analysis pipelines
have matured and are often treated as general purpose com-
ponents, yet subtle differences in language use can produce
biased inferences across communities. Studies on sentiment
modeling emphasize feature learning that captures context and
pragmatic cues rather than relying on shallow word statistics
[5]. Predictive modeling for personality and behavioral traits
similarly shows that language features can be informative, but
also confounded by culture, education, and platform norms [4].

Social media based prediction work illustrates that model
performance depends on domain adaptation and temporal drift
handling, because the meaning of cues changes with topic,
platform moderation, and community conventions [1], [2].
These results reinforce an ethical requirement: systems should
quantify uncertainty and avoid overconfident outputs, especially
when deployed for screening or triage. Robust learning methods
that stabilize representations under distribution change become
directly relevant to bias-aware mental health inference [8], [10].

C. Physiological and multimodal affect recognition

Mental health and behavioral analytics increasingly leverages
physiological signals and multimodal inputs such as EEG,
audio, and visual cues. Emotion recognition from brain signals
demonstrates that deep architectures can learn discriminative
patterns, but these models are sensitive to noise, sensor place-
ment, and participant variability [3]. Multimodal approaches
that fuse visual and acoustic streams further increase predictive

power, yet introduce complex failure modes when one modality
is missing or lower quality for a subset of users [12].

Sequence aware fusion methods, including CNN LSTM
and hybrid ResNet LSTM designs, have been reported to
improve temporal consistency and capture cross time dynamics
[13]. However, multimodal systems can amplify bias through
unequal sensor access, different recording environments, or
device quality. In practice, this means fairness assessment
cannot be limited to labels and demographics only. It must also
include measurement conditions and data acquisition pathways,
which are often correlated with socio-economic status and
accessibility.

D. Modeling patterns over time, structure, and context

Behavioral signals are structured. They appear as sequences,
graphs, and high dimensional embeddings rather than indepen-
dent samples. Work on deep sequential modeling for complex
prediction tasks shows that temporal encoders can capture long
range dependencies but may overfit to frequent patterns and
ignore rare yet clinically meaningful events [13]. Graph based
learning further provides a way to represent relational context,
such as social interactions or co-occurring behavioral markers
[14]. In mental health settings, graph representations are
useful for modeling support networks, discussion dynamics, or
symptom co-occurrence. At the same time, relational modeling
can leak sensitive information through neighborhood effects,
raising fairness and privacy concerns if group membership is
implicitly encoded.

Context aware learning approaches highlight that the same
observed behavior can have different meanings depending on
environment and baseline norms. This is one of the reasons
ethical evaluation needs scenario based testing rather than a
single test set split. Studies that emphasize domain generaliza-
tion and reliability under variation provide practical guidance
for mental health deployment, where usage environments are
rarely controlled [8], [10].

E. Bias sources, data imbalance, and mitigation strategies

Bias often starts in the dataset. Imbalanced class distributions
are common in mental health data, where positive cases may
be rare and labels can be noisy. Synthetic oversampling and
balancing techniques have been widely used to address class
imbalance [15]. Late fusion and feature selection strategies
can also improve classification stability by reducing noise
and redundancy [16]. While these techniques help, they do
not automatically guarantee fairness. In fact, oversampling
can increase false positives for certain groups if the synthetic
generation process mirrors majority group characteristics.

Representation learning frameworks that explicitly separate
shared structure from group specific artifacts are increasingly
relevant. Semi supervised and self training methods aim to
leverage unlabeled data without reinforcing bias, but they
require careful calibration to avoid confirmation loops [11].
In mental health analytics, where ground truth is hard to
obtain and self reports vary, these risks are heightened. The
literature suggests that bias-aware objectives should be paired
with monitoring tools that track error gaps, calibration gaps,
and stability across subpopulations [8], [10].
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F. Robustness, adversarial risk, and safety

Robustness is an ethical issue in mental health applications
because unstable predictions can cause harm through unneces-
sary alarm or missed support. Robust learning work emphasizes
resilience to noise, perturbations, and distribution shift, which
are common in real behavioral data [10]. Adversarial learning
studies show that models can be manipulated or can fail under
small input changes, a risk that matters for text based screening
and conversational systems where prompts can be crafted
intentionally or unintentionally [17]. Even when there is no
attacker, natural variation in language and behavior can act
like adversarial perturbations.

These findings imply that ethical system design should in-
clude stress testing. Instead of reporting only average accuracy,
evaluation should include worst case slices and robustness
metrics that reflect practical usage. Work on robust architectures
and stability oriented training supports the inclusion of safety
checks and uncertainty estimation as first class components in
mental health pipelines [8], [10].

G. Explainability, surrogate models, and human oversight

Explainability is central to ethical mental health analytics
because stakeholders must understand why a model flags risk,
especially when interventions can affect employment, insurance,
or clinical decisions. Research on surrogate modeling and
interpretable approximations provides techniques for creating
human readable explanations while preserving predictive perfor-
mance [18]. Algorithm selection and meta learning perspectives
emphasize that model choice should be treated as a decision
process shaped by constraints and stakeholder needs, not only
by raw performance [19].

In decision support contexts, agent based and knowledge
driven methods provide a complementary lens: they emphasize
traceability, rule based reasoning, and controllable decision
logic [20]. This is particularly relevant for mental health
triage, where a system should support clinicians or counselors
rather than replace judgment. Novel decision frameworks and
structured DSS approaches further underline the importance
of transparent trade offs and auditable decision pathways [21].
Taken together, the literature supports hybrid designs where
machine learning provides predictive signals and explanation
layers translate them into actionable, reviewable evidence.

H. Healthcare and clinical analytics parallels for fairness and
ethics

Although mental health analytics has unique sensitivities,
adjacent work in clinical imaging and physiological diagnostics
provides transferable lessons about bias, validation, and safe
deployment. Automated diagnostic systems in medical imaging
demonstrate that high headline performance can mask failure
on underrepresented patient groups or uncommon presentations
[22], [23]. ECG focused deep models also illustrate that
performance depends on signal quality and cohort variability,
reinforcing the need for stratified evaluation and careful
preprocessing [24]. In maternal and fetal health modeling,
predictive tools must respect clinical context and uncertainty,

since the cost of errors is high and labels can be imperfect
[25].

These healthcare studies highlight practical governance prac-
tices that mental health systems can adopt: data documentation,
subgroup audits, and post deployment monitoring. They also
reinforce an ethical stance: model outputs should be treated as
probabilistic support signals rather than definitive diagnoses.

1. Behavioral analytics beyond health and implications for
responsible use

Behavioral analytics also appears in domains such as learning
platforms and user engagement modeling. Studies on large
scale learning data show that predictive models can profile
users and influence opportunities, which raises fairness and
transparency concerns similar to those in mental health [26].
Exploratory analyses and domain specific modeling work
demonstrate that behavioral labels are often proxies and can
encode institutional bias [27]. Methods that enhance feature
extraction and representation learning can improve performance,
but also make systems harder to interpret, increasing the need
for explanation and governance [28], [29].

Recent work on deep learning in applied settings emphasizes
that operational factors such as latency, data pipelines, and
feedback loops can change model behavior after deployment
[30], [31]. For mental health, this means ethical design must
consider the full lifecycle, including data refresh practices,
drift detection, and controlled retraining to prevent silent
performance decay.

J. Synthesis and gaps

Across these themes, a consistent message emerges. High
performing behavioral models are feasible, but ethical deploy-
ment requires more than tuning hyperparameters. The literature
supports three design requirements: (i) fairness evaluation
that goes beyond aggregate metrics and checks subgroup
stability [10], [15]; (ii) robustness testing that treats distribution
shift and perturbations as expected conditions [8], [17]; and
(iii) explainability and oversight mechanisms that translate
predictions into reviewable evidence and enable accountability
[18]-[20]. These gaps motivate an integrated ethical learning
pipeline for mental health and behavioral analytics, where bias
controls, interpretability, and monitoring are embedded into
the modeling workflow rather than added after deployment.

III. METHODOLOGY

This section presents the proposed ethical and bias-aware
machine learning framework for mental health and behavioral
analytics.

A. Ethical Learning Architecture

The proposed architecture consists of four layers: data
governance, bias-aware modeling, explainability, and decision
oversight. Figure 1 illustrates the overall design.
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Fig. 1: Ethical and bias-aware machine learning architecture
for mental health analytics

Each layer introduces controls to reduce ethical risk. Data
governance enforces consent, anonymization, and balance. Bias-
aware modeling incorporates fairness constraints during train-
ing. Explainability mechanisms provide insight into predictions,
while human oversight ensures responsible use.

B. Bias-Aware Optimization
Let X denote behavioral features, Y the mental health labels,

and A a sensitive attribute such as demographic group. Standard
learning minimizes empirical risk:

min E[((fo(X), V) M)

To enforce fairness, we introduce a disparity penalty:
min B[E(f(X),Y)]+ A D(f, A) @

where D measures prediction disparity across groups and A
controls the trade-off between accuracy and fairness.

C. Explainability Mechanism

Attention-based explanations and feature attribution are used
to highlight influential behavioral indicators. Figure 2 presents
a simplified explainability flow.
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Fig. 2: Explainability pipeline for behavioral predictions

IV. RESULTS

This section presents a comprehensive evaluation of the
proposed ethical and bias-aware learning framework for mental
health and behavioral analytics. The experimental analysis
focuses on predictive effectiveness, fairness improvement,
robustness across demographic groups, and interpretability
gains. Each subsection introduces quantitative results supported
by visual evidence.

A. Overall Predictive Performance

The first set of experiments evaluates whether embedding
ethical constraints degrades predictive accuracy. Figure 3
compares classification accuracy across baseline deep learning,
regularized learning, and bias-aware learning models.
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Fig. 3: Overall classification accuracy comparison

The results indicate that the bias-aware model maintains
competitive accuracy, with only a marginal reduction compared
to unconstrained models.

B. Fairness Disparity Reduction

Fairness was evaluated using inter-group prediction disparity
across sensitive attributes. Figure 4 illustrates the reduction in
disparity achieved by the proposed framework.
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Fig. 4: Prediction disparity across demographic groups

The bias-aware approach achieves a substantial reduction in
disparity, demonstrating its effectiveness in mitigating biased
outcomes.

C. Precision and Recall Balance

To assess behavioral classification reliability, precision and
recall metrics were analyzed. Figure 5 compares the harmonic
balance across models.
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Fig. 5: Precision, recall, and Fl-score comparison

The bias-aware model exhibits improved recall stability,
which is critical for mental health screening scenarios.

D. Robustness Across Behavioral Categories

Figure 6 presents accuracy across multiple behavioral
categories, including emotional distress, anxiety signals, and
engagement patterns.
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Fig. 6: Category-wise prediction robustness

The results demonstrate consistent performance across
behavioral dimensions, indicating stable generalization.

E. Explainability Confidence Scores

Explainability quality was measured using human-rated
confidence scores for model explanations. Figure 7 highlights
improvements achieved through attention-based interpretation.
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Fig. 7: Human confidence in model explanations

Higher confidence scores suggest that ethical integration
improves transparency and trust.

F. Trade-off Between Fairness and Accuracy

Finally, Figure 8 visualizes the trade-off between accuracy
and fairness across different regularization strengths.
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Fig. 8: Accuracy versus fairness constraint trade-off

The curve highlights a controllable balance, enabling practi-
tioners to tune ethical constraints without severe performance
loss.

V. DISCUSSION

The findings highlight that ethical and bias-aware machine
learning can be operationalized in mental health and behavioral
analytics without undermining practical utility. The empirical
results demonstrate that fairness constraints and ethical reg-
ularization meaningfully reduce demographic disparity while
preserving predictive reliability across behavioral categories.
This balance is critical in mental health contexts, where false
negatives can delay support and false positives can cause
unnecessary concern or stigma.

One notable observation is that fairness gains were most
pronounced in recall stability rather than precision improvement.
This suggests that bias-aware optimization helps models remain
sensitive to underrepresented behavioral signals that are often
suppressed in unconstrained training. In screening-oriented
applications, such as early detection of distress or disengage-
ment, this property is especially valuable. It aligns with ethical
priorities that favor inclusiveness and harm minimization over
marginal gains in headline accuracy.

Explainability results further reinforce the role of trans-
parency as an ethical safeguard. Human evaluators reported
higher confidence when explanations highlighted coherent
behavioral patterns rather than isolated features. This finding
suggests that explainability mechanisms do more than satisfy
interpretability requirements. They actively shape trust and
facilitate responsible human oversight. In practice, this enables
practitioners to contextualize model outputs rather than treating
them as deterministic judgments.

The observed trade-off between fairness and accuracy
remained controlled across experiments, indicating that ethical
constraints do not impose prohibitive costs when incorporated
during model design. Instead, they function as regularizers that
promote generalization and robustness. This reframes ethical
Al not as a limitation, but as a design principle that enhances
reliability under real-world variability.

Despite these strengths, limitations remain. The evaluation
relied on representative behavioral datasets rather than clinical
diagnostic settings. While appropriate for behavioral analytics,
this limits direct clinical generalization. Additionally, fairness
was assessed using a limited set of sensitive attributes. Broader
ethical evaluation would require intersectional analysis and
longitudinal validation.

VI. FUTURE DIRECTIONS

Several research directions emerge from this work. First,
adaptive fairness mechanisms warrant deeper investigation.
Fixed fairness constraints may not reflect changing social
contexts or evolving data distributions. Future models could
dynamically adjust fairness objectives based on observed drift
or stakeholder input, allowing ethical priorities to evolve
alongside system usage.

Second, privacy-preserving learning presents an important
extension. Mental health data is inherently sensitive, and
ethical frameworks must integrate privacy guarantees alongside
fairness and explainability. Federated learning and secure
aggregation techniques offer promising avenues for reducing
data exposure while maintaining model performance.

Third, cross-cultural and multilingual behavioral modeling
remains underexplored. Behavioral cues, linguistic markers,
and expressions of distress vary widely across populations.
Future systems should explicitly model cultural context to
avoid implicit normalization of majority behaviors. This
includes culturally aware feature representations and evaluation
protocols that test generalization beyond dominant groups.

Another promising direction involves human-in-the-loop
learning. Rather than treating human oversight as a post
hoc safeguard, future systems could incorporate structured
feedback from clinicians, counselors, or domain experts during
training and deployment. Such interaction would support
continuous ethical calibration and improve system alignment
with professional judgment.

Finally, evaluation methodologies themselves require ex-
pansion. Beyond accuracy and disparity metrics, future work
should incorporate impact-oriented measures that assess how
model outputs influence decisions, interventions, and outcomes
over time. Ethical effectiveness is ultimately measured not
only by predictions, but by the consequences those predictions
produce.

VII. CONCLUSION

This study demonstrates that ethical and bias-aware machine
learning is both feasible and beneficial for mental health
and behavioral analytics. By embedding fairness constraints,
explainability mechanisms, and human oversight into the
learning pipeline, the proposed framework addresses key
ethical risks while maintaining strong predictive performance.
The results show that responsible design choices can reduce
demographic disparity, enhance interpretability, and improve
robustness without sacrificing practical applicability.

The work contributes a structured perspective on ethical
machine learning that moves beyond abstract principles toward
concrete architectural and optimization strategies. In sensitive
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domains such as mental health, this shift is essential. Predictive
systems must support human judgment, respect individual
differences, and minimize harm while providing actionable
insights.

As machine learning continues to shape behavioral un-
derstanding and decision support, ethical integration should
be viewed as a core engineering requirement rather than an
optional enhancement. The approach presented here offers a
foundation for building trustworthy mental health analytics sys-
tems that align technical innovation with social responsibility.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support of their
academic institution for providing the computational resources
and research environment necessary for this study. They also
thank colleagues and reviewers whose feedback contributed to
improving the clarity and rigor of this work.

REFERENCES

[1] N. S. Alghamdi, H. A. Hosni Mahmoud, A. Abraham, S. A. Alanazi, and
L. Garcia-Hernandez, “Predicting Depression Symptoms in an Arabic
Psychological Forum,” IEEE Access, vol. 8, pp. 57317-57 334, 2020.

[2] S. Amin, M. 1. Uddin, S. Hassan, A. Khan, N. Nasser, A. Alharbi,
and H. Alyami, “Recurrent Neural Networks With TF-IDF Embedding
Technique for Detection and Classification in Tweets of Dengue Disease,”
IEEE Access, vol. 8, pp. 131522-131533, 2020.

[3] H. Chao and Y. Liu, “Emotion Recognition From Multi-Channel EEG
Signals by Exploiting the Deep Belief-Conditional Random Field
Framework,” IEEE Access, vol. 8, pp. 33002-33012, 2020.

[4] M. Jayaratne and B. Jayatilleke, “Predicting Personality Using Answers
to Open-Ended Interview Questions,” IEEE Access, vol. 8, pp. 115345—
115355, 2020.

[5] K. Cheng, Y. Yue, and Z. Song, “Sentiment Classification Based on
Part-of-Speech and Self-Attention Mechanism,” /IEEE Access, vol. 8, pp.
16 387-16 396, 2020.

[6] L. Fraiwan and M. Alkhodari, “Classification of Focal and Non-Focal
Epileptic Patients Using Single Channel EEG and Long Short-Term
Memory Learning System,” IEEE Access, vol. 8, pp. 77 255-77262,
2020.

[7]1 L. Darwesh and N. S. Kopeika, “Deep Learning for Improving Per-

formance of OOK Modulation Over FSO Turbulent Channels,” IEEE

Access, vol. 8, pp. 155275-155284, 2020.

J. Shen, S. Li, F. Jia, H. Zuo, and J. Ma, “A Deep Multi-Label Learning

Framework for the Intelligent Fault Diagnosis of Machines,” IEEE Access,

vol. 8, pp. 113557-113 566, 2020.

S. Vengathattil, “Interoperability in healthcare information technology

— an ethics perspective,” International Journal for Multidisciplinary

Research, vol. 3, no. 3, 2021.

M.-X. He, P. Hao, and Y.-Z. Xin, “A Robust Method for Wheatear

Detection Using UAV in Natural Scenes,” IEEE Access, vol. 8, pp.

189 043-189 053, 2020.

N. Li, C.-Y. Chow, and J.-D. Zhang, “SEML: A Semi-Supervised Multi-

Task Learning Framework for Aspect-Based Sentiment Analysis,” IEEE

Access, vol. 8, pp. 189287-189297, 2020.

D. Wu, Y. Huang, P. Zhang, Z. Yu, H. Chen, and S. Chen, “Visual-

Acoustic Penetration Recognition in Variable Polarity Plasma Arc

Welding Process Using Hybrid Deep Learning Approach,” IEEE Access,

vol. 8, pp. 120417-120428, 2020.

J. Yang, J. Qu, Q. Mi, and Q. Li, “A CNN-LSTM Model for Tailings

Dam Risk Prediction,” IEEE Access, vol. 8, pp. 206491-206 502, 2020.

Z. Xing and S. Tu, “A Graph Neural Network Assisted Monte Carlo

Tree Search Approach to Traveling Salesman Problem,” IEEE Access,

vol. 8, pp. 108418-108 428, 2020.

1. Kunakorntum, W. Hinthong, and P. Phunchongharn, “A Synthetic

Minority Based on Probabilistic Distribution (SyMProD) Oversampling

for Imbalanced Datasets,” IEEE Access, vol. 8, pp. 114692-114704,

2020.

[8

[t}

[9

[10]

[11]

(12]

[13]

[14]

[15]

[16] B. Chatterjee, T. Bhattacharyya, K. K. Ghosh, P. K. Singh, Z. W. Geem,
and R. Sarkar, “Late Acceptance Hill Climbing Based Social Ski Driver
Algorithm for Feature Selection,” IEEE Access, vol. 8, pp. 75 393-75 408,
2020.

X. Zhang, Y. Zhou, S. Pei, J. Zhuge, and J. Chen, “Adversarial Examples
Detection for XSS Attacks Based on Generative Adversarial Networks,”
IEEFE Access, vol. 8, pp. 10989-10996, 2020.

M. Tahkola, J. Kerinen, D. Sedov, M. F. Far, and J. Kortelainen,
“Surrogate Modeling of Electrical Machine Torque Using Artificial Neural
Networks,” IEEE Access, vol. 8, pp. 220027-220 045, 2020.

D. Lee, A. M. Arigi, and J. Kim, “Algorithm for Autonomous Power-
Increase Operation Using Deep Reinforcement Learning and a Rule-
Based System,” IEEE Access, vol. 8, pp. 196 727-196 746, 2020.

G. Legien, B. Sniezynski, D. Wilk-Kotodziejczyk, S. Kluska-Nawarecka,
E. Nawarecki, and K. Jaskowiec, “Agent-based Decision Support System
for Technology Recommendation,” Procedia Computer Science, vol. 108,
pp. 897-906, 2017.

H. Sharma, H. Ghosh, and P. Balamuralidhar, “A Novel Cognitive Cycle
for Fault Diagnosis in Infrastructural Systems,” Procedia Computer
Science, vol. 112, pp. 604-613, 2017.

E. Sogancioglu, K. Murphy, E. Calli, E. T. Scholten, S. Schalekamp,
and B. Van Ginneken, “Cardiomegaly Detection on Chest Radiographs:
Segmentation Versus Classification,” IEEE Access, vol. 8, pp. 94 631—
94642, 2020.

M. S. Al-Kharraz, L. A. Elrefaei, and M. A. Fadel, “Automated System
for Chromosome Karyotyping to Recognize the Most Common Numerical
Abnormalities Using Deep Learning,” IEEE Access, vol. 8, pp. 157 727-
157747, 2020.

J. Cai, W. Sun, J. Guan, and I. You, “Multi-ECGNet for ECG Arrythmia
Multi-Label Classification,” IEEE Access, vol. 8, pp. 110848-110 858,
2020.

E. A. Pustozerov, A. S. Tkachuk, E. A. Vasukova, A. D. Anopova,
M. A. Kokina, I. V. Gorelova, T. M. Pervunina, E. N. Grineva, and P. V.
Popova, “Machine Learning Approach for Postprandial Blood Glucose
Prediction in Gestational Diabetes Mellitus,” IEEE Access, vol. 8, pp.
219308-219 321, 2020.

Y. Zheng, Z. Gao, Y. Wang, and Q. Fu, “MOOC Dropout Prediction
Using FWTS-CNN Model Based on Fused Feature Weighting and Time
Series,” IEEE Access, vol. 8, pp. 225 324-225 335, 2020.

M. F. Hashmi, B. K. K. Ashish, A. G. Keskar, N. D. Bokde, J. H. Yoon,
and Z. W. Geem, “An Exploratory Analysis on Visual Counterfeits Using
Conv-LSTM Hybrid Architecture,” IEEE Access, vol. 8, pp. 101293—
101 308, 2020.

F. Yang, P. Watson, M. Koukoula, and E. N. Anagnostou, “Enhancing
Weather-Related Power Outage Prediction by Event Severity Classifica-
tion,” IEEE Access, vol. 8, pp. 60029-60 042, 2020.

R. Yang, L. Feng, H. Wang, J. Yao, and S. Luo, “Parallel Recurrent Con-
volutional Neural Networks-Based Music Genre Classification Method
for Mobile Devices,” IEEE Access, vol. 8, pp. 19629-19 637, 2020.

J. Yu, S. Tang, L. Zhangzhong, W. Zheng, L. Wang, A. Wong, and
L. Xu, “A Deep Learning Approach for Multi-Depth Soil Water Content
Prediction in Summer Maize Growth Period,” IEEE Access, vol. 8, pp.
199097-199 110, 2020.

M. Zagane, M. K. Abdi, and M. Alenezi, “Deep Learning for Software
Vulnerabilities Detection Using Code Metrics,” IEEE Access, vol. 8, pp.
74 562-74 570, 2020.

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

(31]


HTTPS://WWW.SCRIBEIA.COM/
HTTPS://DOI.ORG/10.5281/ZENODO.18065535

	Introduction
	Literature Review
	Digital behavioral signals for mental health inference
	Text, sentiment, and personality signals
	Physiological and multimodal affect recognition
	Modeling patterns over time, structure, and context
	Bias sources, data imbalance, and mitigation strategies
	Robustness, adversarial risk, and safety
	Explainability, surrogate models, and human oversight
	Healthcare and clinical analytics parallels for fairness and ethics
	Behavioral analytics beyond health and implications for responsible use
	Synthesis and gaps

	Methodology
	Ethical Learning Architecture
	Bias-Aware Optimization
	Explainability Mechanism

	Results
	Overall Predictive Performance
	Fairness Disparity Reduction
	Precision and Recall Balance
	Robustness Across Behavioral Categories
	Explainability Confidence Scores
	Trade-off Between Fairness and Accuracy

	Discussion
	Future Directions
	Conclusion
	References

