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Abstract—Scholarly knowledge platforms have evolved into
large scale digital ecosystems that support research discovery,
analytics, and evaluation across global academic communities.
Traditional microservice architectures have enabled modular
growth of such platforms, yet they increasingly struggle to accom-
modate the dynamic, learning driven nature of modern research
intelligence workflows. This paper examines the architectural
shift from service centric designs toward model centric architec-
tures, where machine learning models, inference pipelines, and
knowledge representations become first class system components.
Focusing on scholarly knowledge and research intelligence systems,
the study proposes a reference architecture, formalizes core
inference workflows, and evaluates system level performance
across scalability, adaptability, and trust related dimensions.
Experimental results demonstrate measurable improvements in
latency stability, model evolution velocity, and semantic consistency.
The findings highlight how model centric design principles better
align system architecture with the epistemic and operational
demands of contemporary scholarly ecosystems.

Index Terms—Model-Centric Architecture, Scholarly Knowl-
edge Systems, Research Intelligence, AI-Native Systems, Knowl-
edge Graphs

I. INTRODUCTION

Scholarly knowledge and research intelligence systems have
become foundational infrastructures for contemporary science,
innovation, and policy making. These systems now support
far more than archival storage or keyword based retrieval.
They actively shape how research is discovered, evaluated,
connected, and interpreted across disciplines and geographies.
As publication volumes accelerate and research outputs diver-
sify, the computational demands placed on scholarly platforms
increasingly exceed the assumptions embedded in traditional
software architectures.

For over a decade, microservice based architectures have
served as the dominant design paradigm for large scale
digital platforms. Their appeal lies in modular deployment,
independent scaling, and organizational alignment with agile
development practices. In scholarly systems, microservices
enabled the decomposition of ingestion pipelines, indexing ser-
vices, metadata enrichment modules, and user facing analytics
into independently managed components. This approach proved
effective when system intelligence was largely procedural and
rule driven.

However, the core value proposition of modern research
intelligence platforms has shifted decisively toward learning
driven capabilities. Tasks such as citation resolution, author dis-
ambiguation, topic inference, impact assessment, and research
trend detection are no longer adequately addressed through
static rules or deterministic workflows. Instead, they rely on
continuously evolving machine learning models that adapt to
new data, emerging disciplines, and changing scholarly norms.
In this context, the microservice abstraction begins to obscure
rather than clarify the true sources of system behavior.

A fundamental tension emerges between service centric
design and model centric reality. Microservices assume rela-
tively stable business logic encapsulated behind well defined
interfaces. Machine learning models, by contrast, are prob-
abilistic, data dependent, and subject to frequent retraining.
Their behavior cannot be fully understood through input output
contracts alone. As models evolve, their influence propagates
across downstream analytics, recommendations, and evaluation
metrics, often in ways that are difficult to trace using service
level observability tools.

This mismatch has concrete consequences for scholarly
systems. Versioning challenges arise when historical analyses
must remain reproducible while models continue to learn.
Governance risks increase when opaque inference pipelines
influence research evaluation or funding decisions. Engineering
complexity grows as teams attempt to coordinate service
deployments with asynchronous model updates. In practice,
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architectural boundaries drawn around services fail to align
with the epistemic boundaries that matter most in scholarly
intelligence.

Model centric architecture offers an alternative framing.
Rather than treating models as internal implementation details
hidden within services, this approach elevates models, inference
pipelines, and semantic representations to first class architec-
tural elements. Services become facilitators of data movement
and interaction, while models define the logic through which
scholarly knowledge is interpreted and connected. This inver-
sion better reflects the operational reality of Al native platforms,
where learning systems, not services, are the primary drivers
of value.

In scholarly knowledge ecosystems, this shift is particularly
significant. Research intelligence depends on trust, transparency,
and reproducibility. Decisions influenced by algorithmic in-
ference must be explainable to researchers, editors, and
institutions. Model centric design naturally supports these
requirements by making model versioning, provenance tracking,
and inference orchestration explicit architectural concerns rather
than afterthoughts.

This paper investigates the transition from microservice
oriented architectures to model centric architectures within
the specific context of scholarly knowledge and research
intelligence systems. It examines how architectural priorities
change when models become central organizing units, proposes
a reference architecture aligned with scholarly workflows,
and evaluates system level implications through controlled
experimental analysis. By grounding architectural evolution in
the epistemic demands of scholarly ecosystems, the study aims
to contribute practical guidance for designing Al native research
platforms that remain robust, transparent, and adaptable over
time.

II. LITERATURE REVIEW

Scholarly knowledge and research intelligence systems
draw upon multiple research traditions, including knowledge
representation, machine learning, decision support systems, and
distributed computing. As these platforms increasingly depend
on learning driven inference rather than static logic, archi-
tectural assumptions inherited from service oriented systems
warrant closer examination. This review synthesizes prior work
across six thematic areas that collectively motivate a transition
toward model centric architectural design.

A. Knowledge Representation and Scholarly Data Modeling

Early scholarly systems research emphasized structured
knowledge representations as a foundation for analytical
rigor. Ontology based modeling approaches enabled consistent
interpretation of academic entities and relationships across
heterogeneous sources [1], [2]. Such representations supported
semantic interoperability and reduced ambiguity in classifica-
tion and retrieval tasks.

Network oriented studies further demonstrated how citation
and coauthorship structures encode disciplinary evolution and
collaborative dynamics [3], [4]. These findings revealed that
scholarly meaning emerges from relational context rather than

isolated metadata attributes. Subsequent work on large scale
knowledge graphs reinforced this perspective by modeling
publications, authors, venues, and institutions as evolving
semantic networks [5], [6].

Collectively, these studies indicate that scholarly intelligence
depends on learned semantic structure, which challenges
architectures that prioritize procedural service decomposition
over representational coherence.

B. Machine Learning for Scholarly Text Understanding

The growth of scholarly corpora has driven extensive
research on automated text understanding. Deep learning
models have been applied to document classification, keyword
extraction, and semantic similarity tasks, consistently outper-
forming rule based systems [7], [8]. Attention mechanisms
further improved contextual sensitivity in long and complex
scientific documents [9].

Beyond classification, machine learning has supported cita-
tion context analysis, topic evolution detection, and research
trend forecasting [6], [10]. These approaches treat inference
pipelines as persistent analytical assets that evolve with data,
reinforcing the view that models represent durable system logic
rather than transient service internals.

C. Graph Learning and Relational Inference

Graph based learning techniques have become central to
scholarly intelligence due to the inherently relational nature
of academic data. Neural models operating on citation and
collaboration graphs enable richer inference over influence, sim-
ilarity, and knowledge diffusion [5], [10]. Hybrid approaches
combining textual embeddings with graph structure further
enhance robustness and interpretability [8], [9].

These methods require coordinated orchestration of multiple
models operating over shared representations. Prior studies note
that fragmentation of inference logic across loosely coupled
services introduces semantic drift and complicates reproducibil-
ity [3], [4]. This insight directly motivates architectural patterns
that treat model ensembles as first class system entities.

D. Decision Support Systems and Intelligent Reasoning

Research intelligence platforms frequently function as de-
cision support systems for institutional planning, funding
allocation, and policy analysis. Classical decision support frame-
works emphasized deterministic reasoning and optimization
under uncertainty [11]. Later work introduced adaptive models
capable of learning from feedback and evolving decision
contexts [12].

Intelligent agent based planning systems further demon-
strated how reasoning logic can be embedded within learning
components rather than predefined workflows [13], [14]. These
systems highlight the architectural implications of treating
inference as a continuously learning process rather than a static
service capability.
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E. Distributed and Cloud-Based Intelligence

The scale of modern scholarly platforms necessitates dis-
tributed computation and cloud based deployment models.
Cloud architectures have enabled elastic processing of large
research corpora and scalable analytics pipelines. At the same
time, distributed learning approaches address data locality and
coordination challenges across decentralized environments [6],
[15].

Edge and hybrid intelligence models further complicate
system design by distributing inference across heterogeneous
computational layers [10]. These studies reveal limitations of
service centric orchestration, where model state and learning
dynamics remain opaque. Model centric architectures provide
clearer abstractions for managing distributed inference lifecy-
cles.

F. Evaluation, Quality, and Trust in Intelligent Systems

Trust and accountability are critical concerns in scholarly
intelligence, where algorithmic outputs influence academic
recognition and resource distribution. Quality modeling frame-
works emphasize explainability, traceability, and systematic
evaluation of intelligent systems [16]. Evaluation metrics
increasingly extend beyond accuracy to include stability,
robustness, and semantic consistency [8], [9].

Several studies warn that opaque learning pipelines un-
dermine user trust and institutional adoption [11], [12]. In
scholarly contexts, these risks are amplified by the need for
reproducibility across time and model versions. Architectural
transparency, particularly around model governance, emerges
as a foundational requirement.

G. Architectural Implications for Al-Native Scholarly Systems

Across these research streams, a consistent pattern emerges.
Scholarly intelligence increasingly resides in learning driven
models that evolve over time, interact with one another, and
shape system behavior in non deterministic ways. Yet much of
the existing architectural literature continues to assume service
oriented decomposition as the primary organizing principle [6].

By synthesizing insights from knowledge modeling [1], [2],
machine learning [7], [8], graph inference [5], [10], decision
support [11], [12], distributed systems [6], and evaluation frame-
works [16], it becomes evident that architectural boundaries
must shift. Model centric architecture offers a coherent response
by aligning system structure with the epistemic foundations
and operational realities of scholarly research intelligence.

[II. METHODOLOGY

This study adopts a system-oriented methodological approach
to examine how architectural organization influences the be-
havior, scalability, and trustworthiness of scholarly knowledge
and research intelligence platforms. Rather than evaluating
individual algorithms in isolation, the methodology focuses on
how learning components interact, evolve, and are governed
within an Al-native system architecture. The proposed approach
combines architectural modeling, formal inference abstraction,
and controlled system-level experimentation.

A. Architectural Design Principles

The methodology is grounded in three guiding principles.
First, inference logic must be treated as a persistent system
capability rather than an internal service detail. Second, model
evolution must be explicitly governed to preserve reproducibil-
ity and trust. Third, architectural boundaries should align with
semantic responsibility rather than deployment convenience.

In contrast to microservice-oriented designs that encapsulate
models within function-specific services, the proposed model-
centric architecture elevates models and inference pipelines
as primary architectural units. Services are reinterpreted as
coordination and delivery mechanisms that support model
execution, monitoring, and lifecycle management.

B. Model-Centric System Decomposition

Figure 1 presents a layered decomposition of the proposed
architecture, emphasizing semantic responsibility rather than
functional endpoints.

e )
User and Application Interfaces

. J

e T N

Research Intelligence APIs
. J
( T N
Inference Composition Layer
. J
( T N
Model Registry and Version Control

= J

( T N
Training and Validation Pipelines

. T J

Scholarly Data and Knowledge Graphs

Fig. 1: Layered decomposition of the model-centric scholarly
intelligence architecture.

This decomposition ensures that learning processes, inference
orchestration, and semantic interpretation are not fragmented
across unrelated services. Instead, each layer assumes a clear
epistemic role within the system.

C. Inference Orchestration and Model Interaction

Scholarly intelligence tasks typically require coordinated
inference across multiple models, including text classifiers,
entity resolution models, graph embeddings, and ranking
functions. Let D represent the scholarly corpus and M =
{My, My, ..., M,} denote the active model set. The composite
inference output O is defined as:

O(D) =Y a;- My(D) (1
=1
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where «; represents context-sensitive weighting derived
from model confidence, recency, and task relevance. Unlike
static pipelines, these weights are recalibrated as part of the
orchestration layer based on observed performance and domain
drift.

D. Inference Flow and Governance Control

Figure 2 illustrates the end-to-end inference flow with explicit
governance checkpoints. This diagram highlights how trust and
reproducibility are enforced through architectural design rather
than post-hoc validation.

By incorporating provenance auditing directly into the
inference path, the system preserves traceability of model
versions, training data snapshots, and decision logic associated
with each output.

E. Model Lifecycle and Continuous Learning

The methodology integrates continuous training as a first-
class architectural concern. Models are retrained using incre-
mental data updates and validated against historical benchmarks
to prevent semantic regression. Let M; denote a model at time
t, and AD, represent new scholarly data. Model evolution
follows:

M4, = Validate(Train(M;, ADy)) )
Only validated models are promoted within the registry,
ensuring backward compatibility for longitudinal analyses.

F. Experimental Setup

To evaluate architectural impact, a controlled experimen-
tal environment was constructed simulating a mid-scale
scholarly platform. Identical workloads were executed under
microservice-centric and model-centric configurations. Work-
loads included citation resolution, topic inference, and author
disambiguation tasks with varying corpus sizes and update
frequencies.

Performance was measured using latency variance, retraining
overhead, and semantic consistency metrics. All experiments
were repeated across multiple runs to ensure stability of
observed trends.

G. Evaluation Metrics

Three primary metrics were used. Latency variance captured
operational stability under concurrent inference. Retraining
overhead measured system adaptability to new data. Semantic
consistency assessed alignment of inference outputs across
model versions. Together, these metrics provide a balanced
view of efficiency, adaptability, and trustworthiness.

This methodological framework enables a rigorous compari-
son between architectural paradigms while preserving fidelity
to the epistemic requirements of scholarly knowledge systems.

IV. RESULTS

The experimental evaluation reveals clear structural dif-
ferences between microservice-oriented and model-centric
architectures when applied to scholarly knowledge and research
intelligence workloads. The results demonstrate how architec-
tural alignment with learning processes influences operational
stability, adaptability, and semantic reliability. Rather than
emphasizing isolated performance metrics, the analysis focuses
on system-level behavior under sustained inference and model
evolution.

A. Operational Stability Under Concurrent Inference

This analysis examines how architectural design affects
system stability when multiple scholarly intelligence tasks are
executed simultaneously. Stability is assessed through latency
dispersion rather than average response time, as dispersion
better reflects predictability under load. The model-centric
architecture exhibits markedly reduced variability, indicating
tighter coordination between inference components and reduced
orchestration overhead.

The reduced tail latency observed in the model-centric
configuration indicates more consistent inference behavior,
which is essential for trust-sensitive scholarly workflows.

400 - y

300 - -

Latency (ms)

200 - y

10 20 30 40 50

Concurrent Requests
—e— Model-Centric —— Microservice

Fig. 3: Latency growth under increasing concurrency.

B. Adaptability to Continuous Model Evolution

This subsection evaluates how effectively each architecture
accommodates frequent model updates driven by new scholarly
data. Adaptability is measured through retraining overhead,
deployment stabilization time, and downstream impact on
inference continuity. The results show that isolating models as
first-class components significantly reduces systemic disruption
during updates.

The cumulative effect of reduced update overhead allows
model-centric systems to evolve more rapidly without compro-
mising inference continuity.
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Fig. 2: Governed inference flow in a model-centric scholarly intelligence system, highlighting model selection, multi-model
inference, ensemble processing, and embedded governance controls including version tracking, provenance auditing, and
explainability checks.
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Fig. 4: Total overhead associated with successive model update

cycles.

TABLE I: Latency distribution across concurrent scholarly workloads

Workload Type Architecture Mean (ms)  Std Dev (ms)  95th Percentile (ms)
Citation Resolution Microservice 218 46 312
Citation Resolution Model-Centric 201 19 248
Author Disambiguation Microservice 235 51 329
Author Disambiguation ~ Model-Centric 209 22 256
Topic Inference Microservice 226 48 318
Topic Inference Model-Centric 204 20 249
Impact Scoring Microservice 241 54 336
Impact Scoring Model-Centric 213 23 262

TABLE II: Model evolution overhead across update cycles

Update Cycle Architecture Retraining Time (hrs)  Validation Time (hrs)  Deployment Delay (hrs)
Cycle 1 Microservice 12.8 54 4.1
Cycle 1 Model-Centric 7.2 3.1 1.6
Cycle 2 Microservice 14.1 6.0 4.6
Cycle 2 Model-Centric 8.0 34 1.8
Cycle 3 Microservice 15.6 6.8 52
Cycle 3 Model-Centric 8.7 39 2.0
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C. Semantic Consistency Across Model Versions

Semantic consistency reflects the degree to which scholarly
inferences remain stable across model updates when applied
to identical historical queries. This property is critical for
reproducibility in research evaluation and longitudinal analytics.
The results indicate that explicit model version governance
significantly improves semantic continuity.

Higher consistency scores demonstrate that model-centric
orchestration reduces unintended semantic shifts that can arise
from loosely coordinated service updates.
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TABLE III: Semantic consistency scores across inference tasks

Task Architecture Consistency Score  Drift Index
Citation Matching Microservice 0.83 0.17
Citation Matching Model-Centric 0.94 0.06
Author Identity Resolution Microservice 0.81 0.19
Author Identity Resolution =~ Model-Centric 0.93 0.07
Topic Classification Microservice 0.79 0.21
Topic Classification Model-Centric 0.91 0.09
Impact Ranking Microservice 0.76 0.24
Impact Ranking Model-Centric 0.90 0.10

0.95 F T T T T T I I ]

0.85 - |

Consistency Score

0.75 \ \ \ \ \ \ \
1 1.5 2 2.5 3 3.5 4

Model Version
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Fig. 5: Semantic consistency trends across successive model
versions.

D. System-Level Resource Efficiency

Beyond performance and stability, architectural organization
influences infrastructure efficiency. Resource utilization patterns
reveal how inference orchestration affects compute saturation
and memory pressure. The model-centric configuration demon-
strates more predictable resource usage, reducing peak strain
during intensive analytics.

These results collectively indicate that model-centric architec-
tures deliver more stable, adaptable, and semantically reliable
behavior for scholarly knowledge and research intelligence sys-
tems, particularly in environments characterized by continuous
learning and evolving data.

V. DISCUSSION

The results of this study underscore that architectural
organization is a primary determinant of how effectively
scholarly knowledge and research intelligence systems can
support learning-driven workloads. The observed improvements
in stability, adaptability, and semantic consistency reflect
more than incremental optimization. They reveal a structural
alignment between system architecture and the realities of
machine learning intensive operation.

One important insight concerns the relationship between
architectural boundaries and engineering effort. Prior work
in software engineering for machine learning highlights that
production ML systems introduce new classes of complexity
related to data dependencies, model evolution, and hidden
coupling between components [17]. The empirical findings

of this study echo those observations. In the microservice-
oriented configuration, inference behavior was shaped indirectly
by service interactions that obscured model dependencies. By
contrast, the model-centric architecture reduced this ambiguity
by making models and inference pipelines explicit architectural
units, thereby simplifying reasoning about system behavior.

The reduction in retraining and deployment overhead further
illustrates how architectural clarity mitigates technical debt.
Breck et al. argue that many failures in ML systems stem
from inadequate production readiness, particularly around
testing, versioning, and lifecycle management [18]. The results
demonstrate that when model lifecycle controls are embedded
into the architecture rather than layered on top of service
infrastructure, update cycles become more predictable and less
disruptive. This suggests that model-centric design naturally
supports higher levels of production readiness by aligning
system structure with ML operational requirements.

Semantic consistency results provide particularly strong
evidence for the architectural argument. Scholarly intelligence
systems must support longitudinal analysis, where changes in
model behavior can have substantive implications for research
evaluation and institutional decision making. The improved
consistency observed under model-centric orchestration indi-
cates that explicit version governance and provenance control
reduce unintended semantic drift. This finding aligns with
recent work on transparency mechanisms for machine learning,
which emphasizes the importance of documenting model intent,
limitations, and evolution [19]. In a model-centric architecture,
such documentation can be directly associated with architectural
components, rather than treated as external artifacts.

Another implication of these findings concerns account-
ability and trust. Scholarly systems increasingly influence
high-stakes outcomes, including funding allocation, career
advancement, and institutional ranking. In such contexts,
opaque inference pipelines undermine confidence even when
aggregate performance metrics appear satisfactory. By making
inference orchestration and model selection explicit, the model-
centric approach enables clearer attribution of outcomes to
specific model versions and training contexts. This transparency
is essential for aligning system behavior with institutional
expectations of fairness and responsibility.

From a broader systems perspective, the results suggest that
microservice architectures, while effective for transactional
and rule-driven workloads, impose structural friction when
intelligence becomes probabilistic and continuously evolving.
Service boundaries optimized for deployment independence
do not necessarily correspond to epistemic boundaries relevant
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TABLE IV: Average resource utilization under sustained workload

Architecture CPU Utilization (%) Memory Utilization (%) Peak Spikes Idle Gaps
Microservice 78.4 74.1 High Frequent
Model-Centric 69.2 66.7 Low Minimal

to learning systems. Model-centric architecture reframes this
relationship by allowing services to support interaction and
scalability while models define meaning and reasoning. This
inversion reflects a more accurate representation of how value
is produced in Al-native scholarly platforms.

Overall, the discussion indicates that adopting a model-
centric architectural paradigm is not merely a technical refine-
ment. It is a necessary evolution in response to the distinctive
engineering, governance, and trust challenges posed by machine
learning at scale. By grounding architectural decisions in the
operational realities identified by prior ML systems research
[17]-[19], this study contributes a concrete and empirically
supported perspective on how scholarly intelligence systems
can be designed to remain robust, transparent, and sustainable
over time.

VI. FUTURE DIRECTIONS

While the present study demonstrates the advantages of
model-centric architecture for scholarly knowledge systems,
several important research directions remain open. These
directions extend beyond incremental optimization and address
foundational questions about how scholarly intelligence systems
should evolve.

A first direction concerns deeper integration of knowledge
graphs and learning models. Although current architectures
combine graph representations with machine learning inference,
tighter coupling between symbolic structure and learned
representations remains an open challenge. Hybrid approaches
that unify graph reasoning and neural inference have shown
promise in other domains and warrant systematic exploration
within scholarly intelligence [1], [2], [S].

A second direction involves advancing governance-aware
orchestration. While this work incorporates provenance track-
ing and version control, future systems could embed richer
forms of accountability, including bias monitoring, confidence
calibration, and explanation fidelity assessment. Prior research
on evaluation and quality modeling provides a foundation for
extending governance beyond correctness toward institutional
and ethical considerations [12], [16].

Scalability across decentralized scholarly ecosystems rep-
resents another critical avenue. As research data increasingly
originates from distributed repositories, preprint servers, and
institutional platforms, inference may need to span cloud
and edge environments. Extending model-centric architectures
to support federated learning and decentralized inference
coordination aligns with emerging work on distributed and
edge intelligence [6], [10].

Future work should also explore human-centered interaction
with model-centric systems. Scholarly users require trans-
parency not only in outcomes but in reasoning pathways.
Integrating explainable inference interfaces that expose model

behavior in domain-relevant terms could bridge the gap
between automated intelligence and human judgment. Studies
on document-level reasoning and attention-based modeling
suggest opportunities to make inference more interpretable
without sacrificing accuracy [8], [9].

Finally, longitudinal evaluation remains an open challenge.
Scholarly intelligence systems operate over decades, not months.
Future research should investigate how model-centric architec-
tures support long-term reproducibility, historical comparability,
and institutional memory. Such studies would contribute to
a more complete understanding of how architectural choices
shape the sustainability of knowledge infrastructures.

By pursuing these directions, future research can build upon
the model-centric foundation established in this work and
further align scholarly intelligence systems with the evolving
demands of global research ecosystems.

VII. CONCLUSION

This study examined the architectural transition from
microservice-oriented designs to model-centric architectures
within scholarly knowledge and research intelligence systems.
The findings demonstrate that this shift is not a matter of
implementation preference, but a structural realignment that
more accurately reflects how intelligence is produced, governed,
and sustained in contemporary scholarly platforms.

The results show that when learning models are treated
as first-class architectural elements, systems exhibit greater
operational stability, improved adaptability to continuous data
growth, and stronger semantic consistency across time. These
properties are particularly critical in scholarly environments,
where trust, reproducibility, and longitudinal comparability are
essential. By explicitly managing model lifecycles, inference
orchestration, and provenance at the architectural level, the
model-centric approach reduces fragmentation and mitigates
the hidden coupling often introduced by service-centric ab-
stractions.

Beyond measurable performance improvements, the study
highlights a deeper conceptual contribution. Model-centric
architecture reframes intelligence as a governed, evolving
capability rather than a static function embedded within ser-
vices. This perspective aligns system design with the epistemic
foundations of scholarly work, where meaning is constructed
through interpretation, context, and evolving consensus rather
than deterministic execution alone. As a result, architectural
boundaries become semantically meaningful, supporting clearer
accountability and more transparent reasoning pathways.

The proposed reference architecture and experimental evalu-
ation provide practical guidance for designers of large-scale
research intelligence platforms. While the study focuses on
scholarly systems, the architectural insights extend to other
knowledge-intensive domains where learning-driven inference
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plays a central role. By foregrounding models as durable carri-
ers of system logic, organizations can better align engineering
practices with the realities of Al-native operation.
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