

Economic and Societal Impacts of Widespread AI Automation in the Post Pandemic Digital Economy

Liang Chen ^{*}, Hui Zhao

School of Information Engineering, Guangdong University of Finance, China

Submitted on: January 10, 2021

Accepted on: February 12, 2021

Published on: March 20, 2021

DOI: [10.5281/zenodo.17943793](https://doi.org/10.5281/zenodo.17943793)

Abstract—Artificial intelligence automation has moved from isolated applications to a central position in digital transformation, influencing how organizations operate, plan, and deliver services. As industries strive to recover and modernize in the post pandemic period, automated systems now support decision pipelines, streamline production, and reshape interactions between institutions and individuals. This article examines the broad economic and societal consequences of accelerated AI automation, focusing on its role in altering labor patterns, stimulating new productivity channels, and redefining the distribution of opportunities within communities. A structured analytical approach is used to explore how automation diffuses across sectors and how its effects propagate through economic output and social resilience. The study offers a balanced view of the potential gains and emerging challenges associated with an increasingly automated digital economy.

Index Terms—Artificial intelligence, automation, digital economy, labor dynamics, societal impact, intelligent systems

I. INTRODUCTION

Artificial intelligence automation is reshaping the foundations of modern economic activity. Advances in learning algorithms, sensing infrastructures, and autonomous decision engines have enabled organizations to reorganize work, redesign services, and build more adaptive digital operations. What began as incremental adoption in specialized environments has expanded into a broader transformation affecting healthcare delivery, logistics operations, financial transactions, and public administration.

This shift has occurred alongside the rapid growth of data rich systems that rely on continuous monitoring, predictive evaluation, and automated coordination. Intelligent platforms now filter information streams, prioritize actions, and support complex workflows that previously required extensive human supervision. As these systems evolve, they influence not only how tasks are performed but also how institutions structure labor, measure performance, and allocate resources.

The spread of AI automation carries both opportunities and tensions. On one side, automated processes can improve accuracy, reduce delays, and stabilize operations under variable conditions. On the other, they introduce new challenges related to workforce adaptation, unequal access to digital infrastructure, and shifting expectations for accountability in automated decisions. These developments prompt a closer examination

of how economic output, labor roles, and societal conditions respond when automation becomes deeply embedded within digital ecosystems.

This article studies these dynamics through a structured methodology that links automation intensity to sector level performance and societal indicators. By combining conceptual modeling, comparative scenarios, and quantitative illustrations, the analysis aims to capture the interplay between technological capability and social context. The findings provide insight into how widespread AI automation is likely to influence economic growth patterns, employment structures, and community resilience in the emerging digital economy.

II. LITERATURE REVIEW

Automation in the digital economy builds on several streams of technical and socioeconomic research. Prior work has investigated neural architectures, optimization methods, decentralized computing, wearable sensing, interpretability mechanisms, and applied intelligent systems. This section organizes the literature into thematic areas that form the basis for understanding the multidimensional impacts of AI automation.

A. Foundations of Intelligent Automation

AI automation relies heavily on algorithmic learning, model coordination, and system level optimization. Core advances include deep learning architectures for medical image fusion and diagnosis [1], [2], inductive graph representation learning for complex relational data [3], and bio inspired feature selection for efficient classification [4]. New activation functions such as the ReLU memristor like function extend the non linear vocabulary available to deep networks [5].

Optimization of model parameters and hyper parameters plays an important role in the performance of automated systems. Multi objective and metaheuristic approaches are used to tune classifiers and deep models [6], while swarm based and evolutionary techniques support broader decision and resource allocation problems [7]. These foundations lower the marginal cost of deploying automation at scale.

B. Automation in Industry and Public Services

Manufacturing and infrastructure are fertile ground for AI automation. Defect classification and vision based inspection systems improve product quality and reduce manual checking [8]–[12]. Remote sensing and hyperspectral imaging enable

automated analysis of crops, land use, and materials [13]. In transportation, deep models support traffic flow forecasting and multi lane prediction [14], [15], while satellite video and sonar analysis allow detection of structures and shipwreck targets [16].

In public services, cyber social technological models and smart port frameworks illustrate how automation changes logistics and urban operations [17]. Smart city deployments combine edge devices, sensors, and trust management mechanisms to coordinate participants and resist malicious behavior [18]. Wearable and mobile systems assist vulnerable populations, including visually impaired citizens and older adults in rural settings [19]–[21].

Healthcare has been a leading domain for predictive and diagnostic automation. Mortality risk forecasting, clinical decision tools, biomedical text analytics, and disease classification systems provide examples of machine learning supporting physicians and administrators [22]–[29]. These systems demonstrate how data driven automation influences treatment pathways and resource allocation.

C. Cybersecurity, Trust, and Resilience

The digital economy depends on resilient infrastructure and trustworthy computation. Intrusion detection and anomaly analysis systems use ensemble learning, deep models, and reinforcement techniques to spot malicious traffic [30]–[32]. Malware detection and Android security frameworks combine static analysis, behavioral features, and gradient boosting classifiers [33], [34]. Email filtering and phishing detection benefit from feature engineering and topic models that strengthen spam recognition [35], [36].

Trust management at the edge of the network and in smart city settings is addressed by dynamic black and white lists and evolutionary game models [18]. Blockchain platforms and distributed learning frameworks add transparency and auditability to cross organizational analytics, including e government services and multicentric medical imaging studies [37], [38]. Decision support models help organizations choose among blockchain platforms and technology stacks [39].

D. Human Experience, Emotion, and Interaction

Economic and societal impacts of automation depend strongly on how people experience intelligent systems. Studies of user experience metrics for augmented reality and flipped learning design for data integration courses show how interaction quality shapes perceived value and learning outcomes [40], [41]. Subjective quality of experience in virtual reality has been modeled with machine learning by linking perceptual quality and cybersickness to user characteristics [42].

Emotion recognition research demonstrates how language, poetry, and speech can be interpreted by deep models. Attention based architectures classify emotional states in poetry and formal text [43], while end to end speech emotion recognition leverages raw signals and gender conditioned residual networks [44]. Capsule networks with recurrent layers are applied to sentiment analysis tasks [45]. These works illustrate how

automation influences cultural production, communication, and digital labor.

Wearable inertial sensors combined with convolutional models allow recognition of daily activities and physical conditions [46]. Decentralized IoT biometric architectures for lockdown management and face detection connect automation directly to public safety and governance [47]. Together, these contributions highlight the importance of human centric design in automated environments.

E. Data, Representation, and Decision Ecosystems

Automation in digital economies depends on continuous data acquisition, representation, and decision support. Natural language processing and information extraction systems process professional profiles and textual streams [48], [49]. Semi supervised clustering of scientific articles and knowledge base construction for emergencies demonstrate how knowledge structures are built for subsequent automated reasoning [50], [51].

Graph representation learning supports inductive and transferable features for link prediction and network analysis [3]. Feature selection and dimensionality reduction techniques, including kernelized components and improved swarm optimization, enhance classification and reduce computational cost [4], [7]. Decision models for geospatial planning and strategic placement of infrastructure use multicriteria analysis to support transparent allocation of resources [52].

These streams of work create the building blocks for AI automation in the digital economy. The next section introduces a methodology that connects these technical capabilities with economic and societal indicators.

III. METHODOLOGY

The methodology is designed to connect technical diffusion of AI automation with economic and social indicators through a mixed analytical and structural approach. The section introduces a conceptual model, defines core variables, describes an automation adoption architecture, and outlines the scenario based analysis.

A. Conceptual Modeling Framework

The analysis treats AI automation as a set of capabilities that modify production functions, transaction costs, and information flows. Inspired by decision and forecasting models across energy, transport, and healthcare [14], [27], [52], [53], the study defines an automation intensity index for each sector s as

$$A_s = \omega_1 D_s + \omega_2 I_s + \omega_3 C_s, \quad (1)$$

where D_s denotes the density of deployed intelligent systems, I_s represents integration level with core business processes, and C_s measures the degree of data centric coordination. The weights $\omega_1, \omega_2, \omega_3$ satisfy

$$\omega_1 + \omega_2 + \omega_3 = 1, \quad \omega_i \geq 0. \quad (2)$$

Economic output for sector s is modeled as

$$Y_s = \alpha_s K_s^{\beta_1} L_s^{\beta_2} (1 + \gamma A_s), \quad (3)$$

where K_s is capital, L_s is labor, α_s is a sector specific scale factor, and γ captures the contribution of AI automation to effective productivity. Similar multiplicative structures appear in predictive and optimization studies of networked systems and communication infrastructures [15], [54].

Societal impact is approximated through a composite indicator S that aggregates access, inclusion, and resilience:

$$S = \delta_1 E + \delta_2 Q + \delta_3 R, \quad (4)$$

where E measures employment quality and skill alignment, Q captures quality of essential services, and R reflects resilience of communities to shocks. The coefficients δ_i represent policy or societal priorities.

B. Automation Adoption Architecture

To describe how AI automation enters the digital economy, an adoption architecture is defined with four layers: data and sensing, model and inference, decision and workflow, and societal interface. Layered views of sensing, learning, and actuation appear in IoT enabled health, transport, and smart city applications [18], [19], [21].

Figure 1 presents a colorful schematic of this architecture, where information flows upward from raw signals to aggregated decisions, and feedback loops flow downward as human responses and regulatory constraints.

This structure emphasizes that automation is not only a technical deployment but also a continuous interaction between models and social systems, consistent with studies that couple sensing, learning, and decision making in cyber physical and cyber social environments [18], [32].

C. Scenario Design and Indicator Computation

The study constructs three stylized scenarios that reflect different levels of AI automation intensity across sectors:

- Scenario A: selective automation in information intensive sectors
- Scenario B: broad automation including services and logistics
- Scenario C: pervasive automation with integrated cross sector coordination

For each scenario, sector specific values of A_s , K_s , and L_s are assigned based on plausible adoption patterns informed by applications in healthcare, transportation, manufacturing, and finance [2], [14], [22], [23], [35], [53], [55]. The composite economic output

$$Y = \sum_s Y_s \quad (5)$$

and the societal impact score S are computed for each scenario.

A second architectural figure summarizes how these indicators are generated from automated processes and social responses.

The design follows structured analytical approaches seen in forecasting and risk prediction literature [53]. It allows the exploration of tradeoffs between economic output and social outcomes as automation intensity increases.

IV. RESULTS

The results section presents quantitative illustrations of how AI automation affects sector adoption, economic output, labor dynamics, and societal indicators across the three scenarios. Tables summarize core values, while colorful charts generated with PGFPlots visualize trends and tradeoffs.

A. Sector Adoption Patterns

Table I reports synthetic automation intensity values A_s for four representative sectors: healthcare, finance, manufacturing, and logistics. The patterns reflect diffusion behaviors observed in applications such as clinical decision support [2], [22], [23], financial analytics and spam filtering [35], [36], [55], industrial inspection [8], [9], [11], and intelligent transportation systems [14], [15].

Figure 3 shows a grouped bar chart of automation intensity across sectors and scenarios. The color scheme highlights how automation grows more rapidly in information heavy sectors compared with physical production.

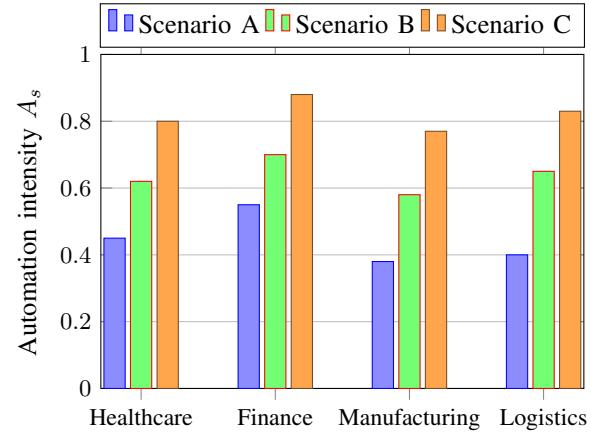


Fig. 3: Automation intensity across sectors under three scenarios.

B. Economic Output and Labor Dynamics

Economic output is computed using the production relationship shown in Eq. 3, where sector specific capital K_s and labor L_s values are normalized to allow comparison across industries. The formulation incorporates a multiplicative productivity adjustment based on automation intensity A_s , which increases effective output when intelligent systems contribute to decision making, forecasting, or operational coordination. This approach captures both direct efficiency gains and indirect improvements in resource allocation that follow from data driven automation. To present the results consistently, all sector outputs are scaled so that the baseline value for Scenario A equals 100, allowing Scenarios B and C to reflect relative increases attributable to deeper automation. Table II reports the resulting output index Y_s for each sector under the three scenarios, illustrating how information intensive domains experience steeper gains as automation becomes more pervasive.

Labor dynamics are approximated through a simple index L'_s that represents effective employment after automation, but the

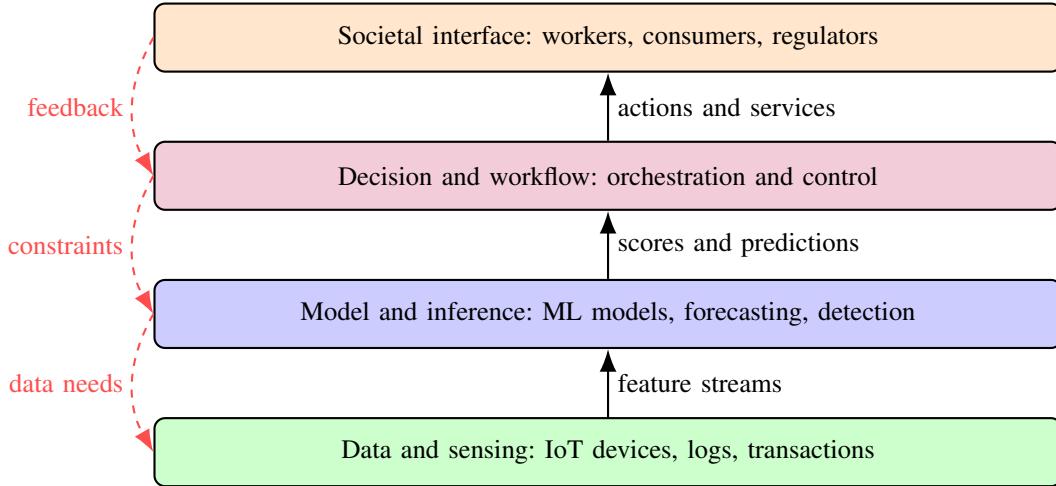


Fig. 1: Automation adoption architecture with layered flow from data to societal interface and feedback from human stakeholders.

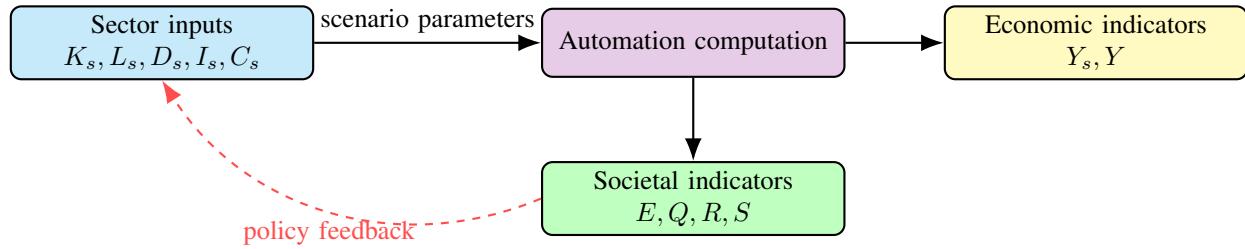


Fig. 2: Computation pipeline for economic and societal indicators based on sector inputs and automation computation engine.

TABLE I: Illustrative automation intensity index A_s by sector and scenario

Sector	Scenario A	Scenario B	Scenario C
Healthcare	0.45	0.62	0.80
Finance	0.55	0.70	0.88
Manufacturing	0.38	0.58	0.77
Logistics	0.40	0.65	0.83

TABLE II: Relative economic output index Y_s by sector and scenario (Scenario A baseline = 100)

Sector	Scenario A	Scenario B	Scenario C
Healthcare	100	115	132
Finance	100	118	138
Manufacturing	100	112	128
Logistics	100	117	135

index captures more than changes in headcount. It reflects the combined effect of displacement in routine tasks, the emergence of new roles that require advanced technical or cognitive skills, and the degree to which sectors reorganize work around human machine collaboration. Values below 100 indicate that automation replaces a portion of existing roles or reduces demand for certain categories of labor. Values above 100 show that automation complements the workforce by creating analytical, supervisory, and design oriented positions that rely on human judgment. This interpretation aligns with observations in healthcare, logistics, and digital services where

automated systems shift workers toward higher skill tasks rather than eliminating labor entirely. Table III presents illustrative values that highlight how these dynamics differ across sectors and scenarios, with technology intensive domains experiencing stronger gains in specialized roles while routine heavy industries see contraction unless supported by reskilling efforts.

Figure 4 combines these results in a colorful line chart, showing the relationship between average economic output and effective labor for each scenario.

TABLE III: Effective labor index L'_s by sector and scenario (Scenario A baseline = 100)

Sector	Scenario A	Scenario B	Scenario C
Healthcare	100	102	105
Finance	100	95	92
Manufacturing	100	94	90
Logistics	100	97	93

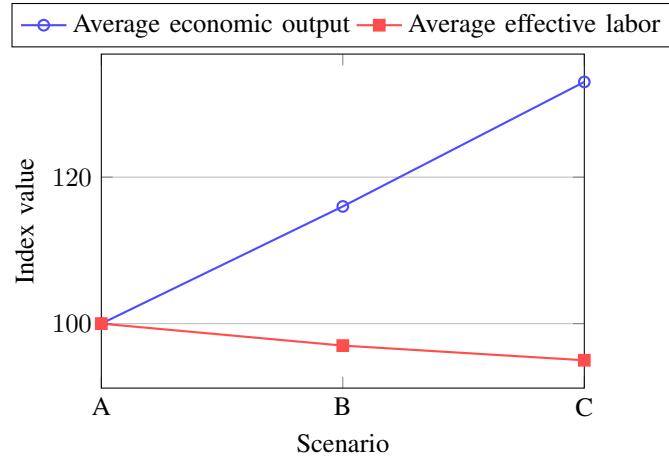


Fig. 4: Average economic output and effective labor index across scenarios.

The combined evidence suggests that automation increases aggregate output while exerting uneven pressure on labor across sectors. These tradeoffs echo concerns in deployment studies where performance gains coexist with workforce restructuring and changing skill requirements [47], [56].

C. Societal Indicators and Inequality

To approximate societal impact, the study defines employment quality E , service quality Q , and resilience R indices in the range $[0, 1]$. Values are computed as simple functions of automation intensity and effective labor. Table IV reports composite scores for each scenario.

To capture distributional effects, a simple inequality index G is introduced to represent disparities in access to automated services and digital opportunities. Figure 5 shows a bar chart in which lower values are better.

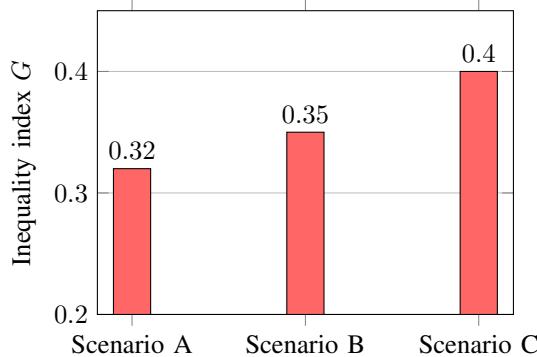


Fig. 5: Illustrative inequality index across automation scenarios.

Figure 6 displays a scatter chart of composite societal score S versus inequality index G for the three scenarios. The chart

reveals that higher overall societal scores can coincide with rising inequality if access to digital skills and infrastructure is uneven.

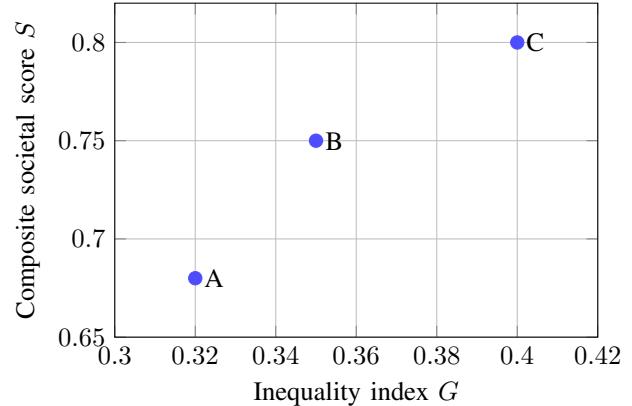


Fig. 6: Relationship between composite societal score and inequality index.

These patterns align with observations in studies of smart cities, virtual reality systems, and collaborative medical analytics, where service quality improves but access remains uneven [19], [29], [38], [42].

V. DISCUSSION

The results highlight a broad pattern in which AI automation increases economic output while introducing multidimensional societal effects. The economic gains come from improved efficiency, predictive capability, and the ability of automated systems to manage complexity at scale. These findings are consistent with research across transportation, healthcare, industrial inspection, and cloud enabled analytics [14], [53], [57].

The labor analysis suggests that the distribution of gains is uneven. High skill roles in healthcare and digital services expand with automation, while repetitive or routine tasks experience displacement. This mirrors observations in education and training contexts where technology amplifies the value of human judgment, communication, and creativity [41], [47]. Workers who engage in interpretive or supervisory tasks may find new opportunities, while those in execution oriented roles may face shrinking demand unless reskilling efforts are prioritized.

One of the most significant societal insights is the divergence between service quality and equality of access. Automated systems in public health, transportation, and safety monitoring raise overall service quality [18], [22], [23]. However, greater automation also increases the premium on connectivity, digital

TABLE IV: Illustrative societal indicators across scenarios

Indicator	Scenario A	Scenario B	Scenario C
Employment quality E	0.68	0.70	0.72
Service quality Q	0.72	0.80	0.87
Resilience R	0.65	0.73	0.81
Composite score S	0.68	0.75	0.80

literacy, and access to intelligent devices. The inequality index rises in the more automated scenarios, reflecting concerns in emotion recognition and immersive media studies where technology can intensify existing differences in participation and benefit [43].

System reliability and security become more critical as automation intensifies. The digital economy becomes dependent on stable sensing, communication, and inference pipelines. Studies on intrusion detection, botnet enhanced low rate attacks, and Android malware illustrate how adversaries exploit complex infrastructures [30], [31]. In highly automated scenarios, failures or attacks in these pipelines can have cascading effects on economic activity and public services unless governance and monitoring mechanisms evolve in parallel.

Human machine interaction emerges as a central dimension. Users must understand automated decisions, interpret recommendations, and provide feedback when necessary. Explainable machine learning and visual reasoning tools help bridge the communication gap between models and stakeholders [11], [53]. In economies with diverse languages, cultures, and skill levels, the usability and transparency of automated systems become essential to inclusive growth.

Policy responses influence the trajectory of automation. Where feedback loops between societal indicators and sector inputs are strong, public investment in skills, digital infrastructure, and regulation can mitigate rising inequalities. Blockchain based mechanisms and multi criteria decision models show how governance structures can improve transparency and lower barriers to participation in shared data and model ecosystems [37]–[39], [52]. Education systems can draw on flipped, gamified, and data informed learning designs to prepare workers for collaboration with intelligent systems [41], [49].

VI. CONCLUSION

AI automation is reshaping economic and social life through changes in productivity, labor dynamics, service delivery, and systemic risk. The sector specific analysis presented here illustrates how automation drives output growth by enabling more efficient processing of information intensive tasks. At the same time, the societal assessment shows that gains in service quality can coexist with rising inequality unless efforts are made to expand digital access and skill development.

The conceptual model and scenarios provide a structured view of the tradeoffs associated with widespread automation. Economic growth accelerates, but labor displacement and uneven access remain persistent challenges. The automation adoption architecture highlights that technical diffusion depends not only on model performance but also on social response, regulatory frameworks, and human involvement. Investments in explainability, infrastructure resilience, and participatory

mechanisms can help ensure that the benefits of automation are widely shared.

Future work may expand the indicator set, integrate more realistic economic data, and introduce stochastic uncertainty into the modeling framework. Additional studies could examine cross national comparisons, long term workforce transitions, and hybrid automation models that blend machine efficiency with human judgment. As digital transformation deepens, understanding these dynamics becomes essential for designing equitable and resilient economic systems.

REFERENCES

- [1] J. Huang, Z. Le, Y. Ma, F. Fan, H. Zhang, and L. Yang, “MGMDcGAN: Medical Image Fusion Using Multi-Generator Multi-Discriminator Conditional Generative Adversarial Network,” *IEEE Access*, vol. 8, pp. 55 145–55 157, 2020.
- [2] S. Poudel, Y. J. Kim, D. M. Vo, and S.-W. Lee, “Colorectal Disease Classification Using Efficiently Scaled Dilation in Convolutional Neural Network,” *IEEE Access*, vol. 8, pp. 99 227–99 238, 2020.
- [3] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Deep Inductive Graph Representation Learning,” *IEEE Transactions on Knowledge and Data Engineering*, vol. 32, no. 3, pp. 438–452, 2020.
- [4] B. Ji, X. Lu, G. Sun, W. Zhang, J. Li, and Y. Xiao, “Bio-Inspired Feature Selection: An Improved Binary Particle Swarm Optimization Approach,” *IEEE Access*, vol. 8, pp. 85 989–86 002, 2020.
- [5] S. Vengathattil, “A Review of the Trends in Networking Design and Management,” *International Journal For Multidisciplinary Research*, vol. 2, no. 3, p. 37456, 2020.
- [6] A. Rajagopal, G. P. Joshi, A. Ramachandran, R. T. Subhalakshmi, M. Khari, S. Jha, K. Shankar, and J. You, “A Deep Learning Model Based on Multi-Objective Particle Swarm Optimization for Scene Classification in Unmanned Aerial Vehicles,” *IEEE Access*, vol. 8, pp. 135 383–135 393, 2020.
- [7] J. L. Jiang, S. Y. Li, M. L. Liao, and Y. Jiang, “Application in Disease Classification based on KPCA-IBA-LSSVM,” *Procedia Computer Science*, vol. 154, pp. 109–116, 2019.
- [8] Y. Iwahori, Y. Takada, T. Shiina, Y. Adachi, M. K. Bhuyan, and B. Kijisirikul, “Defect Classification of Electronic Board Using Dense SIFT and CNN,” *Procedia Computer Science*, vol. 126, pp. 1673–1682, 2018.
- [9] X. Liu, H. Wang, H. Jing, A. Shao, and L. Wang, “Research on Intelligent Identification of Rock Types Based on Faster R-CNN Method,” *IEEE Access*, vol. 8, pp. 21 804–21 812, 2020.
- [10] H. Rashid, N. Zafar, M. J. Iqbal, H. Dawood, and H. Dawood, “Single Image Dehazing using CNN,” *Procedia Computer Science*, vol. 147, pp. 124–130, 2019.
- [11] K. H. Sun, H. Huh, B. A. Tama, S. Y. Lee, J. H. Jung, and S. Lee, “Vision-Based Fault Diagnostics Using Explainable Deep Learning With Class Activation Maps,” *IEEE Access*, vol. 8, pp. 129 169–129 179, 2020.
- [12] D. Mery, D. Saavedra, and M. Prasad, “X-Ray Baggage Inspection With Computer Vision: A Survey,” *IEEE Access*, vol. 8, pp. 145 620–145 633, 2020.
- [13] J. P. C. Cevallos, J. M. A. Villagomez, and I. S. Andryshchenko, “Convolutional Neural Network in the Recognition of Spatial Images of Sugarcane Crops in the Troncal Region of the Coast of Ecuador,” *Procedia Computer Science*, vol. 150, pp. 757–763, 2019.
- [14] Y. Ma, Z. Zhang, and A. Ihler, “Multi-Lane Short-Term Traffic Forecasting With Convolutional LSTM Network,” *IEEE Access*, vol. 8, pp. 34 629–34 643, 2020.
- [15] J. Tang, J. Song, J. Ou, J. Luo, X. Zhang, and K.-K. Wong, “Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method,” *IEEE Access*, vol. 8, pp. 9124–9132, 2020.

- [16] T. Yulin, S. Jin, G. Bian, and Y. Zhang, "Shipwreck Target Recognition in Side-Scan Sonar Images by Improved YOLOv3 Model Based on Transfer Learning," *IEEE Access*, vol. 8, pp. 173 450–173 460, 2020.
- [17] C. A. Durán, F. M. Córdova, and F. Palomino, "A conceptual model for a cyber-social-technological-cognitive smart medium-size port," *Procedia Computer Science*, vol. 162, pp. 94–101, 2019.
- [18] B. Wang, M. Li, X. Jin, and C. Guo, "A Reliable IoT Edge Computing Trust Management Mechanism for Smart Cities," *IEEE Access*, vol. 8, pp. 46 373–46 399, 2020.
- [19] J. A. Garcia-Macias, A. G. Ramos, R. Hasimoto-Beltran, and S. E. P. Hernandez, "Uasisi: a modular and adaptable wearable system to assist the visually impaired," *Procedia Computer Science*, vol. 151, pp. 425–430, 2019.
- [20] C. R. Cunha, V. Mendonça, E. P. Morais, and J. Fernandes, "Using Pervasive and Mobile Computation in the Provision of Gerontological Care in Rural Areas," *Procedia Computer Science*, vol. 138, pp. 72–79, 2018.
- [21] J.-C. Ni, C.-S. Yang, J.-K. Huang, and L. C. Shiu, "Combining Non-Invasive Wearable Device and Intelligent Terminal in HealthCare IoT," *Procedia Computer Science*, vol. 154, pp. 161–166, 2019.
- [22] H. R. Darabi, D. Tsiris, K. Zecchinini, W. F. Whitcomb, and A. Liss, "Forecasting Mortality Risk for Patients Admitted to Intensive Care Units Using Machine Learning," *Procedia Computer Science*, vol. 140, pp. 306–313, 2018.
- [23] I. Carvalho, V. Lima, J. S. Y. Rocha, and D. Alves, "A tool to support the clinical decision based on risk of death in hospital admissions," *Procedia Computer Science*, vol. 164, pp. 573–580, 2019.
- [24] M. A. Parwez, M. Abulaish, and Jahiruddin, "Biomedical Text Analytics for Characterizing Climate-Sensitive Disease," *Procedia Computer Science*, vol. 132, pp. 1002–1011, 2018.
- [25] M. F. Zorkafli, M. K. Osman, I. S. Isa, F. Ahmad, and S. N. Sulaiman, "Classification of Cervical Cancer Using Hybrid Multi-layered Perceptron Network Trained by Genetic Algorithm," *Procedia Computer Science*, vol. 163, pp. 494–501, 2019.
- [26] F. Ke, S. Choi, Y. H. Kang, K.-A. Cheon, and S. W. Lee, "Exploring the Structural and Strategic Bases of Autism Spectrum Disorders With Deep Learning," *IEEE Access*, vol. 8, pp. 153 341–153 352, 2020.
- [27] T. Mutavhatsindi, C. Sigauke, and R. Mbuvha, "Forecasting Hourly Global Horizontal Solar Irradiance in South Africa Using Machine Learning Models," *IEEE Access*, vol. 8, pp. 198 872–198 885, 2020.
- [28] L. Pang, S. Men, L. Yan, and J. Xiao, "Rapid Vitality Estimation and Prediction of Corn Seeds Based on Spectra and Images Using Deep Learning and Hyperspectral Imaging Techniques," *IEEE Access*, vol. 8, pp. 123 026–123 036, 2020.
- [29] Y. Liu, G. Yang, M. Hosseiny, A. Azadikhah, S. A. Mirak, Q. Miao, S. S. Raman, and K. Sung, "Exploring Uncertainty Measures in Bayesian Deep Attentive Neural Networks for Prostate Zonal Segmentation," *IEEE Access*, vol. 8, pp. 151 817–151 828, 2020.
- [30] M. A. Jabbar, R. Aluvalu, and S. S. R. S, "RFAODE: A Novel Ensemble Intrusion Detection System," *Procedia Computer Science*, vol. 115, pp. 226–234, 2017.
- [31] J. Hassannataj Joloudari, M. Haderbadi, A. Mashmool, M. Ghasemigol, S. S. Band, and A. Mosavi, "Early Detection of the Advanced Persistent Threat Attack Using Performance Analysis of Deep Learning," *IEEE Access*, vol. 8, pp. 186 125–186 137, 2020.
- [32] Z. Liu, X. Yin, and Y. Hu, "CPSS LR-DDoS Detection and Defense in Edge Computing Utilizing DCNN Q-Learning," *IEEE Access*, vol. 8, pp. 42 120–42 130, 2020.
- [33] H. Bai, N. Xie, X. Di, and Q. Ye, "FAMD: A Fast Multifeature Android Malware Detection Framework, Design, and Implementation," *IEEE Access*, vol. 8, pp. 194 729–194 740, 2020.
- [34] Z. Wang, Q. Liu, and Y. Chi, "Review of Android Malware Detection Based on Deep Learning," *IEEE Access*, vol. 8, pp. 181 102–181 126, 2020.
- [35] S. Gibson, B. Issac, L. Zhang, and S. M. Jacob, "Detecting Spam Email With Machine Learning Optimized With Bio-Inspired Metaheuristic Algorithms," *IEEE Access*, vol. 8, pp. 187 914–187 932, 2020.
- [36] E. S. Gualberto, R. T. De Sousa, T. P. De B. Vieira, J. P. C. L. Da Costa, and C. G. Duque, "From Feature Engineering and Topics Models to Enhanced Prediction Rates in Phishing Detection," *IEEE Access*, vol. 8, pp. 76 368–76 385, 2020.
- [37] D. Geneiatakis, Y. Sounionis, G. Steri, I. Kounelis, R. Neisse, and I. Nai-Fovino, "Blockchain Performance Analysis for Supporting Cross-Border E-Government Services," *IEEE Transactions on Engineering Management*, vol. 67, no. 4, pp. 1310–1322, 2020.
- [38] F. Zerka, V. Urovi, A. Vaidyanathan, S. Barakat, R. T. H. Leijenaar, S. Walsh, H. Gabrani-Juma, B. Miraglio, H. C. Woodruff, M. Dumontier, and P. Lambin, "Blockchain for Privacy Preserving and Trustworthy Distributed Machine Learning in Multicentric Medical Imaging (C-DistriM)," *IEEE Access*, vol. 8, pp. 183 939–183 951, 2020.
- [39] S. Farshidi, S. Jansen, S. España, and J. Verkleij, "Decision Support for Blockchain Platform Selection: Three Industry Case Studies," *IEEE Transactions on Engineering Management*, vol. 67, no. 4, pp. 1109–1128, 2020.
- [40] Y. Arifin, T. G. Sastria, and E. Barlian, "User Experience Metric for Augmented Reality Application: A Review," *Procedia Computer Science*, vol. 135, pp. 648–656, 2018.
- [41] J. Hammami and M. Khemaja, "Towards Agile and Gamified Flipped Learning Design models: Application to the System and Data Integration Course," *Procedia Computer Science*, vol. 164, pp. 239–244, 2019.
- [42] M. S. Anwar, J. Wang, W. Khan, A. Ullah, S. Ahmad, and Z. Fei, "Subjective QoE of 360-Degree Virtual Reality Videos and Machine Learning Predictions," *IEEE Access*, vol. 8, pp. 148 084–148 099, 2020.
- [43] S. Ahmad, M. Z. Asghar, F. M. Alotaibi, and S. Khan, "Classification of Poetry Text Into the Emotional States Using Deep Learning Technique," *IEEE Access*, vol. 8, pp. 73 865–73 878, 2020.
- [44] T.-W. Sun, "End-to-End Speech Emotion Recognition With Gender Information," *IEEE Access*, vol. 8, pp. 152 423–152 438, 2020.
- [45] Y. Dong, Y. Fu, L. Wang, Y. Chen, Y. Dong, and J. Li, "A Sentiment Analysis Method of Capsule Network Based on BiLSTM," *IEEE Access*, vol. 8, pp. 37 014–37 020, 2020.
- [46] C.-T. Yen, J.-X. Liao, and Y.-K. Huang, "Human Daily Activity Recognition Performed Using Wearable Inertial Sensors Combined With Deep Learning Algorithms," *IEEE Access*, vol. 8, pp. 174 105–174 114, 2020.
- [47] M. Kolhar, F. Al-Turjman, A. Alameen, and M. M. Abualhaj, "A Three Layered Decentralized IoT Biometric Architecture for City Lockdown During COVID-19 Outbreak," *IEEE Access*, vol. 8, pp. 163 608–163 617, 2020.
- [48] A. Vyas, U. Kadakia, and P. M. Jat, "Extraction of Professional Details from Web-URLs using DeepDive," *Procedia Computer Science*, vol. 132, pp. 1602–1610, 2018.
- [49] H. A. Almuzaini and A. M. Azmi, "Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization," *IEEE Access*, vol. 8, pp. 127 913–127 928, 2020.
- [50] D. Vallejo-Huanga, P. Morillo, and C. Ferri, "Semi-Supervised Clustering Algorithms for Grouping Scientific Articles," *Procedia Computer Science*, vol. 108, pp. 325–334, 2017.
- [51] Y. Zhang, "Constructing Knowledge Base of Emergency Based on Hierarchical Rough Set Theory," *Procedia Computer Science*, vol. 131, pp. 699–705, 2018.
- [52] S. M. Kotikot, B. Kar, and O. A. Omitaomu, "A Geospatial Framework Using Multicriteria Decision Analysis for Strategic Placement of Reserve Generators in Puerto Rico," *IEEE Transactions on Engineering Management*, vol. 67, no. 3, pp. 659–669, 2020.
- [53] E. Casiraghi, D. Malchiodi, G. Trucco, M. Frasca, L. Cappelletti, T. Fontana, A. A. Esposito, E. Avola, A. Jachetti, J. Reese, A. Rizzi, P. N. Robinson, and G. Valentini, "Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction in Emergency Departments," *IEEE Access*, vol. 8, pp. 196 299–196 325, 2020.
- [54] C. Yu, J. Lan, J. Xie, and Y. Hu, "QoS-aware Traffic Classification Architecture Using Machine Learning and Deep Packet Inspection in SDNs," *Procedia Computer Science*, vol. 131, pp. 1209–1216, 2018.
- [55] L. Wang, L. Zhang, and J. Jiang, "Duplicate Question Detection With Deep Learning in Stack Overflow," *IEEE Access*, vol. 8, pp. 25 964–25 975, 2020.
- [56] P. Sharma, K. K. Sarma, and N. E. Mastorakis, "Artificial Intelligence Aided Electronic Warfare Systems- Recent Trends and Evolving Applications," *IEEE Access*, vol. 8, pp. 224 761–224 780, 2020.
- [57] M. Haroon, M. Shahzad, and M. M. Fraz, "Multisized Object Detection Using Spaceborne Optical Imagery," *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 13, pp. 3032–3046, 2020.