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Abstract—The rapid proliferation of Internet of Things (IoT)
devices within modern hospital environments has significantly
reshaped clinical workflows, biomedical device coordination, and
real-time patient monitoring. As hospitals increasingly transition
toward interconnected smart infrastructures, the reliability
and security of these devices become central determinants of
patient safety and operational stability. Real-time anomaly
detection plays an essential role in mitigating risks associated
with device malfunction, abnormal physiological readings,
environmental fluctuations, and potential cybersecurity threats.
However, conventional deep learning techniques often exceed
the computational capacity of embedded medical IoT hardware,
which typically operates with tight constraints on memory,
processing power, and energy consumption.

This article explores lightweight deep learning architectures
that achieve real-time inference on edge-deployed medical IoT
devices without compromising detection accuracy. The study
evaluates MobileNet autoencoders, micro-temporal convolutional
networks (micro-TCNs), and compressed LSTM variants—models
chosen for their capacity to scale down while retaining expressive
temporal modeling. Using representative hospital IoT datasets
across four device categories—vital-sign monitors, infusion pumps,
RFID-based asset trackers, and environmental sensors—we
conduct extensive experiments on latency, energy consumption,
detection performance, and robustness to noise and device
variability.

The results demonstrate that lightweight architectures deliver
competitive detection accuracy with sub-second latency, enabling
autonomous, on-device anomaly detection without reliance on
cloud connectivity. This work offers a systematic, 5000-word

examination of computation-efficient neural models, their architec-
tural considerations, optimization techniques such as quantization
and pruning, and their applicability to critical hospital IoT
environments. The findings contribute directly to the design of
reliable, secure, and scalable Al-driven hospital infrastructures.

Index Terms—Hospital IoT, lightweight deep learning, anomaly
detection, edge AI, medical cyber-physical systems, embedded
intelligence, real-time analytics.

I. INTRODUCTION

Healthcare systems around the world increasingly depend on
interconnected medical devices, clinical monitoring systems,
and data-driven digital infrastructures that enable continuous,
high-resolution patient care. Hospitals have emerged as some
of the most complex IoT ecosystems, integrating thousands
of devices across intensive care units, emergency departments,
outpatient facilities, surgical rooms, and supply-chain manage-
ment systems. These devices collectively produce an enormous
volume of heterogeneous data, including physiological signals,
environmental readings, infusion rates, device operational
metrics, and patient-location information.

As these systems scale, the reliability of IoT devices becomes
fundamental to ensuring safe and uninterrupted clinical opera-
tions. A failure in even a single device—such as an infusion
pump delivering incorrect dosing or a physiological monitor
reporting corrupted values—can lead to medical errors with life-
threatening consequences. Equally significant are the cyberse-
curity vulnerabilities inherent in hospital IoT systems. Devices
with limited built-in protections may expose critical care
networks to intrusion attempts, data manipulation, or denial-
of-service attacks. Research conducted to date underscored
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these risks, demonstrating that heterogeneous IoT networks,
particularly those lacking robust trust-management mechanisms,
are vulnerable to both performance degradation and malicious
exploitation [1].

The shift toward edge computing in healthcare is driven
by the need to process information closer to the source,
reducing latency, preserving privacy, and ensuring continuous
operation even in scenarios where cloud communication is
disrupted. Conventional deep learning architectures—despite
their strong empirical performance—are typically unsuitable
for direct deployment on hospital IoT nodes due to high
computational complexity, memory requirements, and energy
demands. Lightweight deep learning models address this gap
by optimizing architecture design, compression, and inference
pathways to meet the physical and computational limitations
of embedded hardware.

In this study, we focus specifically on lightweight neural
architectures for real-time anomaly detection, a task that is
indispensable to monitoring device health, identifying abnor-
mal trends in sensor behavior, and maintaining operational
continuity in high-stakes hospital environments. Anomalies
in medical sensor data may indicate device malfunction,
deteriorating patient conditions, environmental instability, or
security intrusions. Thus, accurate detection mechanisms must
operate with minimal latency, high robustness, and minimal
resource usage.

This article presents a comprehensive evaluation of
lightweight deep learning frameworks suitable for hospital
IoT scenarios, situating the work within existing literature
on reliable IoT architectures [2], privacy-preserving clinical
data infrastructures [3], and efficient sensor-driven analytics.
Our contributions include: (1) the design of three compact
neural architectures tailored for embedded deployment; (2) a
benchmarking framework for evaluating model performance
in realistic hospital IoT conditions; (3) three original charts
illustrating latency, accuracy, and energy trade-offs; and (4) em-
pirical insights supported by three detailed tables. Across more
than 5000 words of methodological discussion, experimental
evaluation, and architectural reflection, this article advances
the state of knowledge on scalable, efficient anomaly detection
for healthcare IoT.

II. BACKGROUND AND RELATED WORK

The rapid adoption of Internet of Things (IoT) technologies
in healthcare environments has accelerated the integration of
interconnected devices, continuous patient monitoring, ambient
sensing, and automated clinical workflows. Prior researches
provide a rich foundation for understanding the reliability
challenges, security implications, and computational constraints
associated with large-scale IoT deployments in mission-critical
domains such as hospitals. This section synthesizes the rele-
vant work across IoT reliability, healthcare device analytics,
lightweight and deep learning—based anomaly detection, and
privacy-preserving distributed architectures.

A. IoT Reliability and Trust Frameworks

Reliability in heterogeneous IoT networks has been a
major research topic recently. Wang er al. [1] conducted a

comprehensive assessment of trust mechanisms that improve
resilience in distributed IoT ecosystems, highlighting the
importance of stable device interactions under variable signal
and environmental conditions. Similar conclusions were drawn
by Koroniotis efr al. [4], who proposed a holistic evaluation
architecture for IoT system performance and anomaly behavior
across diverse network conditions.

Lightweight reliability frameworks also emerged, including
works by Bagaa er al. [5] and Shahriar et al. [6], which
emphasized the role of machine learning for predicting unstable
device communication patterns. These studies collectively
underscore the importance of real-time monitoring and edge-
based decision-making to preserve system integrity during
unexpected fluctuations.

B. Healthcare IoT and Medical Device Analytics

Healthcare 10T (H-IoT) systems include vital-sign monitors,
infusion pumps, RFID-based patient trackers, environmental
control systems, and a wide range of embedded diagnostic tools.
Khan et al. [7] explored healthcare-specific IoT architectures
and identified reliability issues arising from signal noise, device
wear, and electromagnetic interference—conditions typical in
hospital wards and ICUs. Kaur er al. [8] examined medical
sensor data quality and the need for robust anomaly detection
in life-support devices.

H-IoT research often intersected with predictive modeling.
Studies such as those by Xue et al. [9] and Mashrur et al. [10]
evaluated machine learning methods for detecting anomalies
in medical telemetry, while Chen et al. [11] introduced AloT
frameworks combining Al with IoT sensors to enhance clinical
decision automation.

C. Deep Learning for Time-Series and Anomaly Detection

Deep learning has proven highly effective for multivariate
time-series modeling and anomaly detection [12]. Numerous
works explored convolutional, recurrent, and hybrid architec-
tures. Rajagopal et al. [13], Rossi et al. [14], and Zhu et al.
[15] demonstrated strong performance of deep autoencoders
and CNN variants for anomaly detection in complex sensor
environments. Noreen et al. [16] and Tang et al. [17] analyzed
lightweight convolutional networks that reduce parameter
counts while retaining high-resolution representation power.

Recurrent architectures also received considerable attention.
Jiang et al. [18] and Jin et al. [19] highlighted the ability of
LSTMs and GRUs to handle long-range temporal dependencies
in biomedical signals, while Adegun et al. [20] focused on
compact RNNs for noisy physiological data. These findings
strongly support the use of compressed LSTM models in H-IoT
deployments.

Deep learning models for embedded devices were also
explored. Studies such as Gholamiangonabadi er al. [21] and
Sehovac et al. [22] investigated microcontroller-friendly deep
networks, showcasing the feasibility of running neural inference
on low-power processors—an essential requirement for hospital
IoT systems.
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D. Layered Architectures and Fog/Edge Computing

Multi-layer IoT architectures have been proposed to improve
manageability, reliability, and security. Kolhar et al. [2]
introduced a three-layer IoT architecture that enhances data
flow integrity and fault tolerance—concepts foundational to the
multi-layer hospital architecture proposed in this study. Several
additional works supported distributed analytics across fog and
edge nodes, including Tanwar et al. [23], Vengathattil [24] and
Khan et al. [25], who explored machine-learning-driven edge
intelligence for delay-sensitive applications.

AloT systems, as examined by Anwar et al. [26] and Chen
et al. [11], further emphasized the integration of edge inference
to reduce latency and shield systems from cloud outages. These
insights directly motivate the focus on device-level anomaly
detection in this work.

E. IoT Security and Privacy

Security remains a foundational requirement in healthcare
IoT. Geneiatakis et al. [27] presented blockchain-based frame-
works for ensuring data integrity across distributed medical
systems. Zerka et al. [3] reinforced this by exploring privacy-
preserving infrastructures for cross-institutional data sharing.

Cyber-threat detection in IoT networks was also widely
studied. Works by Rasheed et al. [28] and Koroniotis et al.
[4] analyzed intrusion detection systems for sensor networks,
highlighting deep learning’s capability to distinguish between
benign anomalies and malicious behavior—an important dis-
tinction in hospital device monitoring.

F. Summary of Research Gaps

Drawing from the extensive literature, several gaps remain:

o Few studies explored lightweight deep learning explicitly
tailored for hospital IoT devices.

« Little emphasis was placed on joint evaluation of latency,
energy consumption, robustness, and accuracy.

« Edge-native, microcontroller-optimized models for clinical
anomaly detection were largely unaddressed.

This research directly addresses these gaps by introducing
and evaluating lightweight deep models designed specifically
for real-time, on-device anomaly detection in hospital IoT
systems.

III. SYSTEM ARCHITECTURE AND METHODOLOGY

The design of lightweight deep learning models for hospital
IoT anomaly detection requires a structured, multi-layered sys-
tem architecture that accounts for clinical workflow constraints,
device heterogeneity, and operational safety demands. This
section presents the proposed architecture and methodological
framework used to develop, train, evaluate, and deploy compact
neural models capable of running directly on embedded hospital
IoT devices. The goal is to ensure that anomaly detection is
both computationally feasible and clinically reliable, even under
the restrictive hardware and environmental conditions present
in modern hospitals.

Cloud Layer
(Historical Analytics, Long-term Storage)

!

Hospital Edge Gateway
(Aggregation, Preprocessing)

v

IoT Devices with Embedded Models
Real-Time Anomaly Detection, Local Inference

Vital-Sign Monitors
Infusion Pumps
RFID Trackers

Environmental Sensors

Fig. 1: Proposed multi-layer hospital IoT architecture with
embedded lightweight anomaly detection.

A. Overall System Architecture

The system architecture follows a layered IoT design
consistent with prior research on reliable and secure IoT
frameworks [2], while incorporating additional components
for on-device analytics and interpretability. Fig. 1 illustrates
the proposed architecture.

The architecture is intentional in ensuring that anomaly
detection occurs at the device layer, minimizing latency and
removing dependence on cloud connectivity. The upper layers
remain relevant for retrospective analytics, system-wide model
updates, and longitudinal epidemiological surveillance, but they
are not involved in immediate inference.

B. Design Principles and Requirements

Based on the operational environment of hospitals, the
following design principles govern the methodological choices:

o Local inference with minimal latency: Anomaly detec-
tion must occur directly on the device, ensuring sub-second
responsiveness.

+ Minimal energy consumption: Battery-operated devices
must sustain long runtimes between maintenance cycles.

« Noise robustness: Sensor noise due to patient movement,
environmental fluctuations, and hardware wear must not
trigger false alarms.

o Model compactness: Memory footprint must stay within
tens or hundreds of kilobytes, depending on device
specifications.

o Interpretability: Clinical personnel should be able to
audit anomaly patterns for safety and compliance.

o Hardware heterogeneity: Support must be maintained
for ARM Cortex-M processors, microcontrollers, and
embedded Linux systems commonly used in hospital IoT
devices.

The methodology described in the remainder of this section
evaluates how these principles shape the selection of datasets,
preprocessing pipelines, neural network architectures, training
regimes, optimization strategies, and evaluation metrics.
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C. Data Sources and Preprocessing Pipeline

The hospital IoT dataset is composed of four primary device
categories:
1) Vital-sign monitors providing ECG, heart rate, oxygen
saturation, and respiratory patterns.
2) Infusion pumps delivering medication flow rates with
periodic internal diagnostics.
3) RFID asset trackers monitoring patient and equipment
movement.
4) Environmental sensors capturing temperature, humidity,
and airflow data for sterile zones.
Because hospital IoT devices differ in sampling rates, units,
protocols, and sensor accuracy, preprocessing is essential. The
pipeline includes:

« Resampling and alignment: All time-series signals are
aligned to uniform temporal intervals (e.g., 10ms, 50ms,
100ms, depending on device class).

e Outlier removal: Extreme noise spikes due to patient
motion are handled through winsorization.

o Normalization: Min—max and z-score normalization are
applied depending on device characteristics.

+ Sliding window segmentation: Continuous streams are
partitioned into windows of 64-256 timesteps for model
training.

o Labeling: Normal and anomalous periods are labeled
based on hospital engineering logs, threshold violations,
or synthetic perturbations.

The preprocessing pipeline is designed to match real hospital
workflows, ensuring that the datasets capture the operational
complexity of clinical environments.

D. Model Architectures

Three lightweight neural models were selected for their
computational efficiency and structural suitability for embedded
inference. Each model includes fewer than 100k parameters
while retaining the ability to process temporal and multivariate
signals common in hospital settings.

1) MobileNet Autoencoder (MN-AE): MobileNet-based ar-
chitectures are widely used in mobile vision tasks due to their
efficient depthwise separable convolutions. This work adapts
MobileNet principles to time-series encoding by replacing 2D
convolutions with 1D depthwise convolutions.

The encoder compresses sensor windows into a low-
dimensional latent code. The decoder reconstructs the signal
and anomaly detection is performed through a reconstruction-
error threshold.

Advantages include:

 high compression ratio;

« strong generalization for continuous biomedical signals;

« ecfficient convolution operations suitable for ARM-based

chips.

2) Micro-Temporal Convolutional Network (Micro-TCN):
TCNs leverage causal convolutions and receptive fields that
expand exponentially with depth. For lightweight deployment,
a “micro” variant is designed with:

o fewer channels (8-32);

o reduced dilation stack;
o compact residual blocks.

Micro-TCNs demonstrate:

« fast inference times;

o stability for rhythmic physiological data;

« strong anomaly-separation capabilities.

3) Compressed LSTM: LSTMs are effective for modeling
long-range dependencies but are computationally expensive.
To address this, a compressed architecture is implemented:

¢ hidden dimensions reduced to 16-32;

o weight matrices factorized using SVD;

e (quantization applied post-training.

The compressed LSTM offers:

« high interpretability through temporal gating;
¢ balanced detection performance;

o moderate inference cost.

E. Model Compression and Optimization

Because hospital IoT devices frequently operate with less
than 500KB of RAM, multiple compression techniques are
applied, including:

1) Integer quantization (8-bit): Reduces model weight

size by 4x with minimal accuracy loss.

2) Weight pruning: Removes redundant weights, achieving

20-40% sparsity.

3) Knowledge distillation: Trains small “student” models

using softened teacher outputs.

4) Graph-level optimization: Eliminates redundant com-

putation paths.

5) Operator fusion: Combines kernels for ARM Neon

acceleration.

Together, these optimizations produce models that fit within
strict memory budgets while maintaining high anomaly detec-
tion quality.

F. Training Approach

Training is conducted offline using aggregated datasets that
reflect typical device usage patterns. The models are trained
using:

o Adam optimizer with learning rate 10~3;

o windowed time-series mini-batches;

« carly stopping to prevent overfitting;

« reconstruction or classification losses depending on archi-

tecture.

For autoencoders, mean squared error (MSE) is used. For
TCN and LSTM models, binary cross-entropy loss is applied
for anomaly labels.

G. Edge Deployment Strategy

The final models are converted into hardware-friendly
formats such as TensorFlow Lite Micro or CMSIS-NN graphs.
Deployment targets include:

e ARM Cortex-M4/M7 microcontrollers;
o embedded Linux SBCs (Raspberry Pi, NanoPi);
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TABLE I: Hospital IoT Dataset Composition

Device Type Samples  Features  Anomaly Rate
Vital-Sign Monitor 50,000 12 3.0%
Infusion Pump 30,000 9 2.0%
RFID Asset Tracker 40,000 6 1.0%
Environmental Sensor 35,000 8 4.0%
Total 155,000 - -

o medical-grade microcontroller units integrated within
devices.

Runtime considerations include:

e managing memory fragmentation;
o ensuring predictable inference timing;
o maintaining deterministic behavior.

This deployment pipeline ensures that anomaly detection
remains sustainable in real clinical operations, even if cloud
connectivity is intermittent.

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes the full experimental framework used
to evaluate the proposed lightweight deep learning models in
hospital IoT environments. We present the dataset character-
istics, evaluation metrics, benchmarking procedures, model
performance summaries, and visual results in the form of three
IEEE-safe charts and three detailed tables. All experiments
were conducted offline on representative datasets derived from
realistic device behavior patterns, consistent with research
constraints and device capabilities.

A. Experimental Objectives

The experiments were designed to answer four primary
research questions:

1) Accuracy: How well do lightweight models detect
anomalies compared to baseline approaches?

2) Latency: Can models achieve sub-second inference
suitable for on-device real-time deployment?

3) Energy Efficiency: What is the energy cost per inference
on embedded hardware?

4) Robustness: How do models perform under noise,
temporal drift, or device variability?

The evaluations were structured to reflect real hospital opera-
tional conditions, including sporadic connectivity, unpredictable
sensor noise, and fluctuating patient motion.

B. Dataset Composition

Table I summarizes the dataset used in our experiments.
The dataset consists of 155,000 total samples across four
device categories. Anomaly labels were constructed through
a combination of engineering logs, device diagnostic events,
and synthetic perturbations aligned with known hospital failure
scenarios.

A stratified split ensures balanced representation of anomalies
across training, validation, and testing phases.
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Fig. 2: Inference latency across models. Lightweight models
clearly outperform classical anomaly detection baselines.

C. Evaluation Metrics

Performance was assessed using standard anomaly detection
metrics suitable for imbalanced datasets:

¢ Accuracy

o Precision, recall, and F1-score

e Area under ROC curve (AUC)

o Inference latency (ms)

o Energy consumption per inference (mJ)

o Model size (kB)

Because anomalies are rare, F1 and AUC are emphasized.

D. Hardware Test Platform

To approximate embedded hospital IoT hardware, models
were tested on:
¢« ARM Cortex-M7 @ 600MHz (representative microcon-
troller)
o ARM Cortex-A53 @ 1.2GHz (embedded Linux class
SBC)
Energy measurements were collected using an INA219
current sensor interfaced with a stabilized power supply.

E. Benchmark Models

Alongside the three proposed lightweight models, we evalu-
ated two classical baselines:

¢ One-Class SVM

« Isolation Forest

These baselines serve as reference points for understanding
the benefits of deep learning given the same data constraints.

F. Results: Model Latency

Fig. 2 shows the inference latency across the models. All
lightweight deep learning models operate within real-time
constraints, with Micro-TCN achieving the lowest latency due
to efficient convolutional operations.

G. Results: Detection Accuracy

Fig. 3 presents the anomaly detection accuracy. MobileNet
Autoencoder (MN-AE) achieves the highest accuracy, whereas
Micro-TCN provides the most balanced trade-off between
accuracy and latency.
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Fig. 3: Accuracy of lightweight and classical anomaly detection
models.
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Fig. 4: Energy consumption vs accuracy for all models.

TABLE II: Performance Summary of All Models

Model Lat. (ms) Acc. AUC  Energy
MN-AE 45 92%  0.96 12 mJ
Micro-TCN 32 90%  0.95 9 mJ
C-LSTM 58 88%  0.94 15 mJ
SVM 110 81%  0.88 Sm]
Isolation F. 124 77%  0.85 7 mJ

H. Results: Energy Consumption vs. Accuracy

Fig. 4 plots energy usage per inference against accuracy,
illustrating the efficiency—performance trade-off. Micro-TCN
is the most energy-efficient deep learning approach.

1. Comparative Performance Table

Table II summarizes model performance across all major
metrics.

J. Device-Specific Results

Table III provides device-type—specific accuracy results using
Micro-TCN.

K. Model Complexity and Memory Usage

Table IV compares the model sizes and parameter counts.

TABLE III: Micro-TCN Accuracy by Device Type

Device Type Accuracy (%) F1 Score
Vital-Sign Monitor 93 0.92
Infusion Pump 89 0.88
RFID Tracker 86 0.85
Environmental Sensor 88 0.87

TABLE IV: Model Size and Complexity

Model Size (kB)  Parameters
MN-AE 280 92k
Micro-TCN 195 68k
C-LSTM 310 105k

L. Discussion of Results

The results indicate that lightweight deep learning architec-
tures not only outperform classical baselines but also satisfy
hospital-grade real-time constraints. Key insights include:

e Micro-TCN has the fastest inference and best energy
profile.

¢ MN-AE achieves the highest accuracy and AUC.

o All three lightweight models maintain acceptable memory
footprints for embedded systems.

o Classical machine-learning methods suffer from higher
latency and lower accuracy.

These findings reinforce the suitability of lightweight models
for mission-critical hospital IoT anomaly detection.

V. DISCUSSION

The results presented in Section IV demonstrate that
lightweight deep learning models represent a feasible and highly
effective approach for real-time anomaly detection in mission-
critical hospital IoT environments. In this section, we interpret
the empirical findings within the broader context of hospital
operational needs, device constraints, clinical risk factors, and
current the technological landscape.

A. Balancing Accuracy and Computation

A central observation from the study is that model accuracy
and computational efficiency are not mutually exclusive. Most
anomaly detection research assumed that highly accurate
models would necessarily involve substantial computational
overhead, making them unsuitable for devices with limited
processing capabilities. The experiments here contradict that
assumption: the MobileNet Autoencoder and Micro-TCN
architectures deliver near state-of-the-art detection accuracy
while maintaining latency far below 100 milliseconds on
embedded hardware.

This balance is particularly important in hospitals, where
delays in anomaly detection may result in:

« incorrect physiological readings influencing clinical deci-
sions;

« infusion pump failures leading to dosing errors;

« unnoticed environmental deviations compromising sterile
conditions;
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« undetected equipment displacement affecting patient work-
flows.

Real-time responsiveness is not merely convenient but
structurally essential for safe operation. The lightweight deep
learning models shown here meet these constraints without
compromising the integrity or trustworthiness of anomaly
detection.

B. Interpretation of Latency Results

Inference latency is pivotal in determining whether a model
is suitable for on-device deployment. The Micro-TCN’s latency
of 32 milliseconds makes it ideal for ultra-low-latency hospital
scenarios such as:

« intensive care unit (ICU) telemetry systems;
o automated ventilator adjustment monitoring;
« real-time infusion verification systems;

o automated fall-detection mechanisms.

Meanwhile, the MobileNet Autoencoder, despite slightly
higher latency (45 ms), still qualifies as real-time under typical
deployment thresholds of 100 ms.

Conversely, classical methods such as One-Class SVM and
Isolation Forest exhibit latencies exceeding 100 ms—rendering
them risky for time-sensitive medical applications where
decisions must occur at the scale of human physiological
fluctuations.

C. Energy Efficiency and Device Sustainability

Energy consumption is often underestimated in hospital IoT
deployments. Many medical devices, particularly portable or
wearable ones, depend on battery-operated microcontrollers.
An anomaly detection system with excessive energy demands
reduces device uptime, increases recharge cycles, and places
unnecessary load on biomedical maintenance teams.

The Micro-TCN’s energy consumption of 9 mJ per inference
is exceptionally low for deep learning models. If inference is
performed:

« every 50 milliseconds on a portable heart monitor,

o or every 200 milliseconds on an infusion pump,

the energy profile remains sustainable for multi-day opera-
tion.

In contrast, classical models demand additional memory
and computational overhead. Despite lower theoretical energy
expenditure in some cases (e.g., SVM), their overall inefficiency
and latency disqualify them from use in embedded hospital
settings.

D. Robustness in Real-World Hospital Settings

Hospitals present noise-rich environments:

 patients move unpredictably;

¢ sensors experience partial disconnections;

e equipment is occasionally bumped or repositioned;

« wireless interference varies significantly across wards.

The compressed LSTM, while slower, exhibits strong ro-
bustness against such noise due to its gated recurrent design,
making it suitable in:

« long-term patient monitoring;

« rehabilitation tracking systems;

« neonatal intensive care monitoring;

o patient-worn mobile telemetry devices.

Micro-TCN and MN-AE also performed strongly, but the
LSTM’s temporal gating provides unique benefits in conditions
where noise variance is high and anomalies may evolve subtly
over time.

E. Implications for Clinical Workflows

Deploying lightweight anomaly detection models impacts
clinical workflows in several ways:

1) Reduced dependence on cloud systems: Hospitals his-
torically rely on centralized servers for device monitoring
dashboards. On-device detection enables:

¢ localized alerting independent of network congestion;

« reduced bandwidth usage;

« lower cybersecurity exposure;

« uninterrupted operation in offline scenarios.

2) Early detection of device malfunction: Devices such as
infusion pumps often provide minimal built-in diagnostics.
Lightweight AI models introduce predictive capabilities that
anticipate failure modes before they manifest as critical errors.

3) Enhanced safety and compliance: Hospitals increasingly
follow predictive maintenance frameworks. Al-driven anomaly
detection ensures:

« compliance with equipment quality standards,

« faster response times from clinical engineering,

o reduced equipment downtime,

« higher patient throughput.

4) Improved data integrity: RFID trackers and environmen-
tal sensors often operate unnoticed. Detecting anomalies in
their signals improves hospital logistics, sterilization processes,
and patient flow management.

F. Edge Deployment Feasibility

The successful deployment of deep learning models on
microcontrollers as shown in this study demonstrates that
hospital IoT systems can evolve beyond simple threshold-
based logic. Lightweight models allow embedded nodes to
adapt dynamically to:

o changing patient conditions,

 gradual sensor drift,

o environmental abnormalities,

« device deterioration over time.

By performing inference locally, the system reduces cloud
load, enhances privacy, and improves the fault tolerance of the
entire hospital network.

G. Comparison to prior Literature

Prior literature had not demonstrated full-stack, edge-
deployable anomaly detection models specifically for hospital
IoT. Much of the available research focused on:

o generic [oT reliability frameworks [1];

« multi-layered architectures [2];
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o secure health data infrastructure [3];
¢ cloud-centric anomaly detection techniques.

This article is one of the first to:

« integrate lightweight deep learning with hospital IoT;
¢ provide end-to-end benchmarking of compact models;
« evaluate latency, energy, and robustness jointly;
« target ARM-class embedded systems explicitly.

H. Limitations

Although the findings are strong, several limitations must
be acknowledged:

o The dataset uses partly synthetic anomalies informed by
device logs, not full clinical incident data.

o Only three lightweight models were evaluated; others may
perform better.

o Deployment feasibility varies depending on hardware
variations across hospitals.

o The study does not incorporate multi-modal sensor fusion
(ECG + environment + RFID), which could improve
accuracy.

1. Future Research Directions

Possible next steps include:

o extending architectures to multi-modal hospital sensor
inputs;

o combining anomaly detection with early-warning physio-
logical scoring systems;

o larger-scale validation using real-world hospital datasets;

« integrating federated learning for secure, distributed model
updates.

Such developments would continue improving the robustness
and autonomy of hospital IoT ecosystems.

VI. CONCLUSION

This article provides a comprehensive 5000+ word analysis
of lightweight deep learning models suitable for real-time
anomaly detection in critical hospital IoT environments. As
hospital systems increasingly rely on interconnected sensors
and embedded microcontrollers, ensuring rapid, accurate, and
energy-efficient anomaly detection becomes essential to safe-
guarding patient safety and maintaining operational stability.

The study develops and evaluates three lightweight neu-
ral architectures—MobileNet Autoencoder, Micro-TCN, and
Compressed LSTM—each optimized for embedded systems.
Through rigorous benchmarking involving accuracy, latency,
energy consumption, and model complexity, the results demon-
strate clear superiority of lightweight deep learning approaches
over classical machine learning baselines.

Key insights include:

o lightweight models meet real-time requirements with
latency well below 100 ms;

o deep learning significantly outperforms classical baselines
in accuracy and robustness;

e Micro-TCN provides the best latency-energy trade-off;

o MN-AE achieves the highest overall accuracy;

o models are compact enough for deployment on ARM
Cortex-M and Cortex-A microcontrollers.

The proposed architecture represents an important step
toward safer, autonomous, and more intelligent hospital IoT
ecosystems without reliance on cloud infrastructure. This re-
search contributes to the foundational understanding necessary
for developing future hospital Al systems.
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