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Abstract—Natural language understanding for scientific and
operational texts has evolved from rigid symbolic pipelines
to flexible neural architectures. Ontologies, terminologies, and
rule based engines have enabled structured reasoning over
domain specific concepts, while deep learning has delivered strong
performance on language modeling and sequence classification
tasks. Scientific articles, clinical notes, maintenance logs, and
operational reports combine formal technical language with local
abbreviations and narrative fragments. This article introduces a
hybrid framework that connects ontology driven representation
with transformer based models for robust natural language
understanding across scientific and operational text streams. The
framework is evaluated on classification, retrieval, and decision
support tasks using realistic domain scenarios, and it demonstrates
how structured knowledge and neural representations can be
combined to support traceable, data driven decisions.

Index Terms—Ontologies, transformers, natural language un-
derstanding, scientific texts, operational logs, decision support
systems, hybrid architectures.

I. INTRODUCTION

Scientific and operational environments generate large vol-
umes of text in the form of research articles, laboratory
protocols, incident tickets, field logs, and status dashboards.
These documents capture hypotheses, experimental conditions,
failures, and corrective actions that are essential for evidence
based decision making. Unlike general web text, scientific
and operational narratives mix mathematical notation, domain
specific jargon, and terse phrases that are shaped by local work
practices.

Early systems for processing such text relied on hand
crafted rules and controlled vocabularies. Ontology centered
infrastructures supported consistent indexing and search, but
they often required costly manual curation and struggled
with emerging terminology. At the same time, advances in
machine learning have produced architectures that can learn

patterns directly from data. Transformer models in particular
can represent complex linguistic dependencies, yet they do not
by themselves enforce domain constraints or support long term
knowledge maintenance.

This work addresses the gap between symbolic and neural
approaches for domain specific natural language understanding.
The article proposes a hybrid framework where ontologies
and operational taxonomies provide explicit structure, while
transformer encoders capture contextual semantics. Scientific
and operational texts are mapped into a joint space that supports
retrieval, classification, and decision support. The goal is to
preserve the transparency and controllability of ontology based
systems while benefiting from the adaptability of deep neural
networks.

The remainder of the article is organized as follows. Section
IT reviews related work on ontologies, domain text mining,
and neural architectures. Section III presents the proposed
methodology, including the hybrid ontology transformer model
and its mathematical formulation. Section IV describes the
experimental setup and reports quantitative and qualitative
results using tables and charts. Section V discusses implications
for scientific and operational workflows. Section VI concludes
the article and outlines directions for future research.

II. BACKGROUND AND RELATED WORK

This section situates the proposed approach within work on
domain ontologies, machine learning for operational data, and
neural models for scientific and technical texts. The emphasis
is on methods that support structured decision making and
large scale analytics in real world settings.

A. Ontologies and Knowledge Representation for Domain Texts

Ontologies and structured knowledge bases have long been
used to encode domain specific terminology, conceptual hier-
archies, and constraints. Formalisms such as description logics
and Web Ontology Language (OWL) provide machine readable
structures that support reasoning and consistent annotation
of documents [1]. Systematic surveys of ontology learning
highlight a variety of techniques that extract concepts and
relations from text, opinionated documents, and semi structured
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sources, and that organize them into reusable knowledge
artifacts [2].

Ontologies play an important role in environments where
high level goals and operational constraints must be aligned.
For instance, research information systems that track projects,
institutions, and outputs rely on controlled vocabularies and
entity models to support navigation and reporting [3]. In
clinical and industrial settings, process models and structured
knowledge help describe pathways, workflows, and equipment
states that interact with textual observations [4]. Work on
knowledge capitalization in inventive design shows how case
based reasoning combined with latent semantic analysis can
reuse design experiences encoded in text and diagrams [5].

Decision support frameworks also leverage paraconsistent
logics and fuzzy reasoning to handle inconsistent or uncertain
information. For example, productivity studies in software
measurement introduce paraconsistent logics to reconcile
conflicting evidence during project remeasurement [6]. In
medical and engineering domains, models for decision making
support combine physical measurements, text descriptions,
and expert knowledge [7]. These approaches motivate hybrid
representations where formal ontologies and learned semantics
can interact.

B. Machine Learning for Scientific and Operational Data

Machine learning has been applied widely to scientific
and operational datasets such as clinical records, industrial
sensor streams, and logistics reports. In health decision making,
deep neural networks have been evaluated as recommendation
engines that process structured attributes together with textual
descriptors of patient status and treatment options [8]. Work on
electronic health record adoption highlights organizational and
technical barriers that affect the quality and completeness of
digital records, which in turn shape what learning algorithms
can infer from text and structured fields [9].

Operational analytics extends to transport logistics, power
systems, and smart manufacturing. Stochastic models for
transport logistics characterize flows and delays using dif-
fusion and Markov approximations, often informed by textual
descriptions of incidents and constraints [10]. Studies of
digital transformation in organizations describe how operational
processes are reconfigured to support data driven decision
making [11]. Evaluation frameworks for smart manufacturing
systems stress the need for metrics that combine real time
sensor data with human reports and documentation [12].

Agent based and multi agent decision support systems
provide another strand of work where textual knowledge
is integrated into operational models. Agent based expert
systems for technology recommendation demonstrate how
logical inference and machine learning can be combined
to guide choices under uncertainty [13]. Intelligent traffic
flow control and transportation modeling apply evolutionary
algorithms and discrete event simulation to complex urban
networks [14]. These scenarios highlight the variety of scientific
and operational texts, from design notes to event logs, that
need to be understood by computational systems.

C. Neural Architectures for Scientific and Operational Texts

Neural architectures have advanced the state of the art in
sentiment analysis, topic modeling, and sequence labeling for
domain specific texts. Hybrid topic based sentiment models
have been used to predict elections from social media, combin-
ing word distributions with sentiment scores and geolocation
[15]. Studies of topical cohesion in online communities show
how graph based measures of community structure interact
with language use patterns [16]. These approaches underscore
the importance of modeling both text and interaction networks.

Deep architectures such as convolutional neural networks
(CNN) and recurrent neural networks (RNN) have been adapted
to short and noisy texts. CNN based models have been used
for situation understanding from microblog sentiment streams
by combining word embeddings and convolutional filters
[17]. Attention based autoencoder topic models demonstrate
that local context and global document structure can be
captured jointly to handle short domain specific messages
[18]. Generative conversational models with recurrent networks
and attention mechanisms support dialogue in languages with
limited resources, including technical and colloquial registers
[19].

Named entity recognition and semantic sentiment analysis
are crucial for extracting structured signals from scientific and
operational narratives. Bidirectional LSTM CNN architectures
have been proposed for named entity recognition in under
resourced languages, showing strong performance when com-
bined with domain specific embeddings [20]. Work on suicide
sentiment prediction in social networks combines machine
learning with semantic resources to detect at risk expressions
[21]. These results suggest that careful feature design and
model architecture choices can help neural systems capture
nuanced meaning in specialized text.

D. Decision Support, Group Reasoning, and Cyber Contexts

Scientific and operational texts often feed into decision
processes that involve multiple stakeholders. Group decision
making and soft consensus models study how citation networks
and expert opinions can be summarized using extended h index
measures and consensus functions. In knowledge intensive
organizations, classification models for medical datasets and
credit risk support decisions where ethics, transparency, and
feature selection are essential [22]-[24].

Cyber and infrastructural contexts introduce additional
complexity. Taxonomies of cross domain attacks on cyber
manufacturing systems describe how vulnerabilities propagate
between logical and physical layers [25]. Intrusion detection
and response systems for optical networks illustrate how
machine learning can analyze signal profiles and alarms to
infer malicious activity [26]. These domains rely on a mix of
structured logs, configuration files, and free text operator notes.

The literature on process mining and business process
analytics provides tools for connecting textual artifacts to
workflow models. Post implementation reviews of enterprise
resource planning systems use event logs and process mining
to evaluate procurement processes [27]. Structural similarity
measures for business process models support the comparison
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of mining algorithms and the detection of noise and deviations
[28]. Together with work on ontology evaluation methods [29]
and knowledge systematization [2], these contributions motivate
architectures that bring ontologies and neural models into a
single decision support framework.

III. METHODOLOGY

This section presents the hybrid ontology transformer frame-
work for natural language understanding in scientific and
operational domains. The goal is to combine structured concepts
and relations from ontologies with contextual embeddings
learned by transformer encoders.

A. Problem Formulation

Let D = {dy,...,dn} denote a collection of documents,
where each document d; is a scientific or operational text such
as an article abstract, incident ticket, or maintenance log. Each
document is associated with one or more task specific labels,
such as topic class, risk level, or recommended action.

The ontology is represented as a directed labeled graph O =
(C,R), where C is a set of concepts and R is a set of relations.
Following common knowledge representation practices [1],
each concept ¢ € C may have preferred labels, synonyms, and
logical definitions.

For each document d, the framework produces:

o A transformer based contextual representation hy € R*.
e An ontology based representation oy € R™ derived from
concept annotations.

The combined representation is given by

zq = Wirhg + W,04 + b, (1)
where W), € RP** W, € RP*™_ and b € R? are trainable
parameters. This linear combination allows the model to weight
neural and symbolic contributions differently across tasks.

For classification tasks, the probability of label y given
document d is modeled as

eXP(WJZd)

T

P d) = ——F——
LR S ont

@

where w,, is the weight vector for class y. For retrieval tasks,
cosine similarity between combined vectors is used.

To support confidence aware decisions, the framework
introduces a calibration function that tracks agreement between
neural and ontology signals. Let s (d) and s,(d) denote scalar
scores from the neural and ontology channels. A calibrated
score is defined as

Scat(d) = asp(d) + (1 — a)so(d) — v|sn(d) — so(d)], (3)
where a € [0, 1] controls the balance and v > 0 penalizes
disagreement. This structure draws inspiration from paraconsis-
tent reasoning where conflicting evidence is treated explicitly

[6].

B. Hybrid Ontology Transformer Architecture

The architecture consists of four layers: input preprocessing,
ontology projection, transformer encoding, and decision fusion.
Fig. 1 presents an overview of the main components.

Scientific /

Operational Text

Tokenization Ontology
Subwords Concept
Matching

Transformer Ontology
Encoder Encoder

Calibration

{
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Decision Tasks
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Retrieval, Alerts

Fig. 1: Hybrid ontology transformer architecture for scientific
and operational texts.

Scientific and operational corpora often contain domain
specific abbreviations, device identifiers, and formula fragments.
Preprocessing uses subword tokenization and normalization
strategies inspired by work on short text and situation un-
derstanding [17], [18]. Ontology concepts are matched using
lexicon based mapping combined with embedding similarity,
informed by practices in ontology evaluation and learning [2],
[29].

The ontology encoder aggregates concept embeddings and
relation patterns into a fixed length vector. Techniques from
group decision models and h index based measures guide the
design of aggregation functions that respect concept importance.
The transformer encoder follows standard multi head attention
and feed forward blocks, initialized from a general language
model and fine tuned on domain corpora.

The fusion and calibration layer implements equations (1)
and (3), producing both class probabilities and confidence
measures. This structure supports downstream decision support
applications in transport, health, and cyber manufacturing,
where alignment between data driven and rule based recom-
mendations is critical [25], [27].
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TABLE I: Datasets and tasks used in the experiments.

Subset Documents  Classes Example Domain
SciAbs 12000 8 Scientific topics
ClinNotes 8500 5 Health risk levels
OpsLogs 15200 6 Operational incidents

C. Training and Inference Pipeline

Fig. 2 illustrates the training and inference pipeline. The
pipeline is designed to handle streaming operational logs as well
as static scientific collections. Techniques from performance
optimization and streaming queries guide the design of the
batch and online components [30], [31].

Data collection aggregates scientific corpora and operational
logs from domains such as health, transport, and manufacturing,
similar to prior studies on clinical pathways, transport logistics,
and smart manufacturing evaluation [4], [10], [12]. Annotation
links documents to ontology concepts and task labels, building
on techniques from ontology evaluation and decision rule
learning [29], [32].

Joint training minimizes compound loss

L=Lys+ )\lﬁalign + /\2Lcala 4

where L is the cross entropy for classification, Lyjign encour-
ages alignment between ontology and transformer embeddings,
and L, penalizes inconsistent calibrated scores. The alignment
term is inspired by work on fusion of spatio temporal and
thematic features in surveillance [33].

The deployed service exposes APIs and dashboards that
integrate with existing decision support tools. Recommenda-
tions and risk assessments derived from text are combined with
simulation and optimization engines, drawing on experience
from agent based decision support systems and smart education
frameworks [13], [34]. Online monitoring tracks performance
and drift indicators, and feedback is used to adjust thresholds
and retrain models.

IV. EXPERIMENTAL SETUP AND RESULTS

This section reports experiments on a composite benchmark
that includes scientific abstracts, clinical like narratives, and
operational incident logs. The goal is to evaluate how the
hybrid ontology transformer framework performs compared
with transformer only and ontology only baselines.

A. Datasets and Tasks

Table I summarizes the main datasets and tasks. The design
of the benchmark takes inspiration from work on scientific
information systems, clinical pathways, and transport networks
[31, [4], [35]. Each subset reflects a realistic mixture of
structured and free text.

The SciAbs subset contains research abstracts with topic
labels aligned with project and subject ontologies as used in
research program information systems [3]. ClinNotes simulates
clinical notes with risk levels and pathways informed by
studies of clinical pathways and decision support for treatment
processes [4], [36]. OpsLogs includes operational incident

TABLE II: Model configurations and main characteristics.

Model Params  Ontology Notes

OntoOnly 4M Yes Concept counts, rules
TransOnly 110M No Base transformer encoder
HybridSmall 65M Yes Shared encoder, small head
HybridFull 120M Yes Full joint encoder

reports related to transport and smart manufacturing, reflecting
routing policies and equipment states [12], [35].

Tasks include document classification, risk prediction, and
retrieval of similar incidents. These tasks align with applications
such as anomaly detection in online discussions [37], crowd
evacuation modeling [38], and personalized recommendation
for online news streams [39].

B. Model Configurations

Table II describes the compared models. Hyperparameter
choices are guided by prior work on classification for medical
datasets, imbalance handling, and performance modeling [23],
[30], [40].

OntoOnly encodes documents as concept frequency vectors
with rule based scoring, in line with traditional ontology driven
decision support [1], [2]. TransOnly uses a transformer encoder
fine tuned separately on each subset [17]. HybridSmall and
HybridFull implement the proposed architecture with different
capacities for the fusion and calibration layers.

C. Main Classification Results

Fig. 3 shows macro F1 scores for each model and dataset.
The chart highlights how hybrid models improve performance,
especially on subsets with sparse labels or noisy text. Similar
improvements have been reported for domain specific sentiment
analysis and topic modeling [15], [18].

The results indicate that OntoOnly performs reasonably on
SciAbs, where terminology aligns closely with ontology labels,
but it lags on ClinNotes and OpsLogs. TransOnly improves
performance by capturing contextual cues, yet it suffers when
label distributions are skewed or when rare terminology appears.
HybridFull yields the best scores, suggesting that combining
symbolic and neural information is beneficial.

D. Calibration and Drift Robustness

Beyond raw accuracy, operational decision support systems
must maintain reliable confidence estimates over time. Inspired
by studies of cross domain attacks and transport modeling [10],
[25], the experiments introduce distribution shifts by changing
incident frequencies and terminology.

Fig. 4 reports expected calibration error (ECE) before
and after drift. Lower values indicate better calibration. The
hybrid models retain more stable calibration than the baselines,
benefiting from the disagreement penalty in equation (3) and
the anchoring effect of ontology scores.

Calibration improvements are particularly relevant for tasks
such as anomaly detection in online discussions [37] and intru-
sion detection in optical networks [26], where overconfident
yet incorrect predictions can mislead operators.
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Fig. 2: Training and inference pipeline.
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Fig. 3: Macro F1 scores on classification tasks.
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Fig. 4: Expected calibration error before and after simulated
drift on OpsLogs.

E. Retrieval and Decision Support Metrics

Retrieval experiments measure how well the combined
representation supports similarity search for scientific and
operational scenarios. Mean average precision (MAP) and
normalized discounted cumulative gain (NDCG) are used
as metrics, following practices in recommendation engines
and process aware information systems [39], [41]. Fig. 5
summarizes MAP scores across datasets.
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Fig. 5: Mean average precision for document retrieval.

The gains are strongest on ClinNotes and OpsLogs, where
ontology concepts capture key entities and relations that guide
retrieval, similar to how competence visualization frameworks
use survey and log data to map learning outcomes [42].
The hybrid representation also supports downstream decision
support metrics, such as correct suggestion of clinical exercises
or transport routing options, which are central in prior work
on clinical rehabilitation support and bus network management
[35], [36].

F. Ablation and Ontology Contribution

To quantify the contribution of the ontology channel, an
ablation study removes ontology inputs or disables the disagree-
ment penalty. Fig. 6 shows macro F1 on OpsLogs for different
variants. The pattern echoes findings from studies where feature
selection and domain knowledge improve classification of
technical signals and business processes [13], [43].

HybridNoOnt uses the fusion layer but passes only trans-
former embeddings, while HybridNoCal keeps both channels
but sets v = 0 in equation (3). The results show that both
ontology information and calibration contribute to performance,
especially under drift and class imbalance.

G. Complexity and Throughput

Finally, Table III reports training time per epoch and infer-
ence throughput on OpsLogs. Measurements are obtained on a
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Fig. 6: Ablation study on OpsLogs.

TABLE III: Training and inference costs on the OpsLogs subset.

Model Train Time / Epoch  Docs / Second (Inference)
TransOnly 18 min 420
HybridSmall 21 min 380
HybridFull 25 min 350

single GPU, following approaches to performance modeling
for multi core architectures and grid container deployments
[30], [44].

The additional cost of the hybrid models is moderate
relative to the improvements in accuracy and calibration.
This trade off is acceptable in many operational settings
where decision quality and traceability are more critical than
marginal differences in throughput, as also observed in smart
manufacturing and wireless sensor network security studies
[12], [45].

V. DISCUSSION

The experiments demonstrate that combining ontologies with
transformer encoders can improve both predictive performance
and calibration for scientific and operational text understand-
ing. This section discusses design choices, limitations, and
implications for deployment.

First, the ontology channel acts as a regularizer that anchors
representations to domain concepts. This effect is visible in
datasets where terminology is sparse or unevenly distributed,
similar to the role of semantic resources in suicide sentiment
prediction and topic specific sentiment vectors [21], [46]. When
incoming documents contain novel phrasing or abbreviations,
the ontology mapping still produces stable concept level
features that guide decision scores.

Second, the calibration mechanism that penalizes disagree-
ment between neural and ontology scores helps identify cases
where additional review is needed. This aligns with practices
in paraconsistent decision methods and fuzzy inference where
conflicting evidence is handled explicitly [6], [47]. In opera-
tional workflows, documents with large disagreement can be
routed to experts, while high agreement cases can be handled
automatically.

Third, the hybrid framework supports integration with exist-
ing decision support and process aware information systems.

Agent based systems, process mining dashboards, and smart
education frameworks already manage ontologies and rule sets
[13], [27], [34]. The proposed architecture can plug into such
environments as a text understanding module that feeds high
level indicators and recommendations.

However, several challenges remain. Ontology coverage and
quality vary across domains, and building mappings from text
to concepts still requires effort, as emphasized in ontology
evaluation and systematization studies [2], [29]. Transformer
models may also capture spurious correlations if training data
reflect biased reporting practices. Careful evaluation across
subpopulations and contexts is essential, following lessons from
digital transformation and health decision making research [8],

[11].

VI. CONCLUSION

This article presented a hybrid ontology transformer frame-
work for natural language understanding in scientific and
operational domains. The architecture combines ontology based
concept representations with transformer based contextual
embeddings, and it introduces a calibration mechanism that
encourages agreement between neural and symbolic signals.

Experiments on composite benchmarks that include scientific
abstracts, clinical like notes, and operational incident logs
show that the hybrid approach can outperform ontology
only and transformer only baselines in terms of macro F1,
retrieval quality, and calibration. The ontology channel provides
structure and interpretability, while the transformer encoder
captures nuanced linguistic patterns drawn from prior work
on sentiment analysis, topic modeling, and sequence labeling
[15], [18], [20]. The fusion mechanism is particularly effective
under distribution shifts and class imbalance, conditions that
are common in cyber manufacturing, transport logistics, and
smart manufacturing systems [10], [12], [25].

The framework supports integration with decision support
tools that rely on ontologies, process models, and recommen-
dation engines, extending earlier efforts in agent based expert
systems, process mining, and group decision analytics [13], [27].
By making both neural and symbolic contributions explicit,
the architecture offers a path toward traceable and adaptable
natural language understanding in high stakes scientific and
operational environments.

VII. FUTURE WORK

Several directions for future research emerge from this study.
One avenue is to explore richer forms of interaction between
ontologies and transformer encoders. For example, relation
aware attention mechanisms could incorporate ontology edges
directly into attention weights, inspired by work on fusion of
spatial, temporal, and thematic features in surveillance and text
mining [33], [48]. Neuro symbolic knowledge graph reasoning
could also allow the model to generate or refine ontology edges
based on patterns in text.

A second direction is to extend the benchmark with addi-
tional domains such as sport science, wireless networks, and
environmental monitoring, where sensor readings and technical
descriptions coexist [49]-[51]. These contexts would test the
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robustness of the framework under different reporting cultures
and data collection practices. They would also encourage the
design of tasks that combine numerical series, images, and text,
building on multimodal work in medical imaging and bioheat
modeling [52], [53].

A third direction concerns human in the loop evaluation.
Experiments could observe how domain experts use hybrid
explanations during clinical rehabilitation support, transport
planning, or cyber incident analysis [25], [35], [36]. User
studies can measure trust, effort, and decision quality when
experts interact with ontology anchored, transformer enriched
recommendations compared with black box outputs.

Finally, future work should address incremental ontology
maintenance and adaptation. As new scientific and operational
concepts emerge, methods for ontology learning, evaluation,
and update [2], [29] need to be integrated tightly with
transformer fine tuning procedures. This will help maintain
alignment between symbolic and neural components over long
periods, ensuring that natural language understanding remains
grounded in up to date domain knowledge.
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