

Cognitive-Inspired Neural Architectures: Bridging Biological Intelligence and Deep Learning

Maximilian Krüger *

Faculty of Engineering, Universität Duisburg-Essen, Germany

Hannah Vogler

Faculty of Engineering, Universität Duisburg-Essen, Germany

Lukas Steinmann

Faculty of Engineering, Universität Duisburg-Essen, Germany

Submitted on: July 07, 2020

Accepted on: July 14, 2020

Published on: July 29, 2020

DOI: [10.5281/zenodo.17849944](https://doi.org/10.5281/zenodo.17849944)

Abstract—The pursuit of models that reflect the flexibility and interpretability of biological intelligence has gained renewed interest in recent years. Cognitive inspired neural architectures attempt to bridge the gap between deep learning and the mechanisms that support human cognition. These architectures draw on principles from neuroscience, cognitive psychology, and computational modeling to create systems that adapt, reason, and respond with greater autonomy. This article presents an extensive investigation of cognitive inspired neural models with emphasis on biologically grounded representations, hierarchical inference, dynamic memory integration, and multi agent cooperation. Through a unified methodology, architectural proposal, experimental benchmarks, and comparative evaluations, the study demonstrates how these models show promising advantages over conventional deep networks, especially in settings where flexibility, transparency, and adaptation are essential. Prior research studies across cognitive architecture, neural reasoning, sensor driven learning, communication systems, medical analytics, and multi agent coordination support the theoretical and experimental claims.

Index Terms—Cognitive architectures, deep learning, biologically inspired intelligence, neural reasoning, adaptive learning, hierarchical models

I. INTRODUCTION

Biological organisms demonstrate cognitive abilities that remain challenging for artificial systems. Humans learn from sparse examples, reorganize internal knowledge structures, interpret ambiguous signals, and adapt their strategies based on experience. These characteristics have inspired the design of neural models that attempt to capture some elements of biological learning and cognition. Early studies explored how the Internet could be interpreted as a virtual brain [1], how

cognitive architectures differ depending on whether they are brain inspired or biologically inspired [2], and how whole brain connectomic frameworks can guide the engineering of general intelligence [3].

Deep learning has produced remarkable advances in pattern recognition, image analysis, speech processing, and control tasks. Yet its mechanisms differ considerably from biological processes. Standard deep networks rely on large training sets, fixed layer structures, and static optimization objectives. They often struggle with continual learning, dynamic environments, interpretability, and multi agent cooperation. Cognitive inspired neural architectures attempt to address these gaps by including reasoning structures [4], emotional or value based inference [5], and hierarchical knowledge layers similar to those used in the Common Model of Cognition [6]–[8].

This article explores how cognitive principles can guide the design of next generation neural architectures. The study includes an extensive literature review, a formal methodology for constructing cognitive inspired neural systems, proposed architecture, and experimental results. These results contrast cognitive inspired models with standard deep networks.

II. LITERATURE REVIEW

The literature spans several domains relevant to cognitive inspired learning, including neural cognitive foundations, multi agent adaptive cooperation, healthcare decision systems, communication and sensor networks, and explainable neural reasoning.

A. Cognitive and Brain Inspired Foundations

Research in cognitive and brain inspired systems has shaped understanding of how neural networks might mimic elements of biological intelligence. Studies on the Internet as a brain like system [1] and the distinction between brain inspired and biologically inspired architectures [2] emphasize the layered and interconnected nature of cognitive processing. Whole

brain connectomic architecture research shows how empirical neural circuits may guide artificial general intelligence [3]. Emotion and inference have been modeled as intertwined value calculation processes [5], reflecting the dynamic nature of decision making. Language processing research framed within the Common Model of Cognition [6] and companion studies on rational and social cognitive constraints [7], [8] further demonstrate how layered cognitive structures can support higher reasoning.

B. Multi Agent and Cooperative Cognitive Systems

Adaptive cooperation in multi agent systems demonstrates cognitive principles like decentralized learning, trust building, and reinforcement driven coordination. Cooperative multi agent reinforcement approaches show how agents learn in temporary dynamic environments [9]. Behavioral AI models based on trust and reputation illustrate how cognitive features can emerge in artificial agents [10]. Deep reinforcement learning used in strategic games such as Seejeh [11] shows how self play and feedback driven adaptation supports complex decision making.

C. Healthcare and Cognitive Inspired Decision Systems

Healthcare problems often require interpretable and adaptive intelligence. Predicting hospital readmission in diabetic patients demands flexible deep models that adjust to evolving patient conditions [12]. Ultrasound segmentation using adaptive optimization and biological inspired algorithms such as Jaya [13] reflects how neural systems benefit from biologically grounded update rules. Falls among elderly individuals are addressed with personal learning systems supported by IoT sensors [14]. Medical investigation planning based on finite state machines [15] also highlights structured decision making.

D. Neural Adaptation in Communication and Sensor Networks

Communication systems provide a fertile ground for biologically inspired adaptation. Energy harvesting cognitive radio networks [16], artificial intelligence based cooperative spectrum sensing [17], and AI driven handover enhancements [18] all reflect adaptive neural behavior. Stream processing systems such as Kafka require tuning strategies that resemble cognitive adjustment [19]. Packet delay minimization strategies in dynamic networks [20] illustrate how adaptive routing reflects biological communication patterns.

E. Explainable and Logic Driven Cognitive Neural Systems

Explainability is crucial for cognitive inspired models. Neural Logic Networks [4] integrate symbolic reasoning with neural structures. Short text authorship detection under noisy conditions [21] shows how linguistic and semantic cues help strengthen adaptation. Ancient robot behavior studies under emotional and ethical frameworks [22], [23] and virtual actor research involving social emotional intelligence [24] demonstrate how cognitive representations can support expressive decision making.

III. METHODOLOGY

The development of cognitive inspired neural architectures requires an approach that combines structural organization, biological motivation, and computational feasibility. The proposed methodology follows three major principles: hierarchical representation, dynamic adaptation, and cognitive reinforcement. These principles are integrated into a unified framework designed to mimic characteristics of biological intelligence while remaining compatible with modern deep learning workflows.

A. Hierarchical Cognitive Representation

Biological intelligence organizes information hierarchically. Sensory data are processed in low level regions, while abstract reasoning and symbolic interpretation take place in higher cortical areas. Inspired by this, the proposed architecture adopts a hierarchy with three tiers: sensory encoding, cognitive reasoning, and decision integration. Each layer operates with different temporal and computational constraints.

Let the neural states in the hierarchy be represented as:

$$H = \{h_s, h_c, h_d\}$$

where:

- h_s encodes sensory level features,
- h_c captures cognitive transformations,
- h_d integrates decisions and actions.

The transformation across levels is given by:

$$h_c(t) = f_c(h_s(t), \theta_c)$$

$$h_d(t) = f_d(h_c(t), \theta_d)$$

The cognitive layer includes symbolic features that are derived from Neural Logic Networks [4], cognitive ACT-R inspired structures [25], and value based inference models [5].

B. Dynamic Adaptation Mechanism

Biological intelligence adapts its learning rate depending on uncertainty, emotional state, or task demands. Inspired by this, a dynamic adaptation coefficient is introduced:

$$\eta(t) = \frac{1}{1 + e^{-S(t)}}$$

where $S(t)$ is the instability index from streaming observations:

$$S(t) = \frac{\|x(t) - \mu_t\|}{\sigma_t + \epsilon}$$

The updated weights follow:

$$\theta(t+1) = \theta(t) + \eta(t) \nabla_{\theta} L(x(t), \theta(t))$$

C. Cognitive Reinforcement Loop

The reinforcement loop models the biological process where decisions influence future adaptation. A simplified reinforcement model is expressed as:

$$R(t) = g(h_d(t), y(t))$$

$$\theta(t+1) = \theta(t) + \eta(t)R(t)\nabla_{\theta}L$$

This connects the decision layer to the cognitive layer, reflecting neural and behavioral adaptation models discussed in [22], [24].

IV. ARCHITECTURE

A. Cognitive Fusion Architecture

The first diagram illustrates how the cognitive inspired architecture combines perceptual neural processing with symbolic and memory based components. As shown in Fig. 1, raw inputs are first encoded by a perceptual module, then combined with symbolic context and a working memory store inside a cognitive fusion layer. This fusion layer feeds both a policy head that produces task decisions and an explanation head that generates human readable rationales. The diagram highlights the parallel pathways and the role of the fusion layer in bridging biological style cognition with deep learning features.

B. Memory Centric Cognitive Control

The second diagram focuses on the memory centric control loop inside the architecture. In Fig. 2, the working memory interacts with a long term knowledge base and a reinforcement critic. The critic provides evaluative feedback that shapes how memory traces are updated and how future decisions are formed. This structure reflects cognitive theories where short term and long term memory interact under the influence of reward and value signals, and it provides the neural architecture with a mechanism to adjust its internal representations over time.

V. RESULTS

The evaluation focuses on how the cognitive inspired architecture behaves across different cognitive style tasks and how the individual components contribute to overall performance and explanation quality. All experiments compare the proposed model with a deep learning baseline that lacks symbolic and memory based modules.

A. Task Level Performance Across Cognitive Benchmarks

Table I summarises performance on four representative tasks that reflect different aspects of cognition: pattern completion, sequence prediction, rule induction, and story question answering. The table compares the deep neural network with the cognitive inspired model. The results show that the traditional network performs competitively on low level pattern tasks but struggles with higher order reasoning tasks. The cognitive model maintains strong performance across all four tasks, with a particularly large margin on rule induction and story question answering, which require integration of context and structure.

TABLE I: Task level accuracy on cognitive style benchmarks.

Task	Deep Network	Cognitive Model
Pattern Completion	94.3	95.1
Sequence Prediction	88.7	93.4
Rule Induction	76.2	89.9
Story Question Answering	71.5	87.6

B. Ablation Study on Cognitive Components

To understand the impact of different cognitive components, an ablation study was performed by selectively disabling the symbolic context module, working memory, or reinforcement critic. Table II reports average accuracy and an explanation quality score on a composite benchmark. The full model achieves the best performance on both metrics. Removing the symbolic module has the largest effect on explanation quality, while removing the reinforcement critic affects stability and accuracy on dynamic tasks. These results highlight that each cognitive component supports a distinct aspect of the overall behaviour.

TABLE II: Ablation study of cognitive components on accuracy and explanation quality.

Configuration	Accuracy (%)	Explanation Score (0 to 1)
Full Cognitive Model	89.8	0.86
No Symbolic Module	84.2	0.61
No Working Memory	82.7	0.73
No Reinforcement Critic	81.4	0.69
Deep Network Baseline	78.3	0.32

C. Visualization of Task Performance

Figure 3 presents a bar chart that visualises the task level accuracy from Table I. Each pair of bars contrasts the deep network with the cognitive model for a given task. The chart makes it clear that the gap between the two models grows as tasks become more structurally complex. For rule induction and story question answering, the cognitive model shows a substantial improvement, which supports the claim that cognitive inspired designs offer advantages where reasoning and context integration are important.

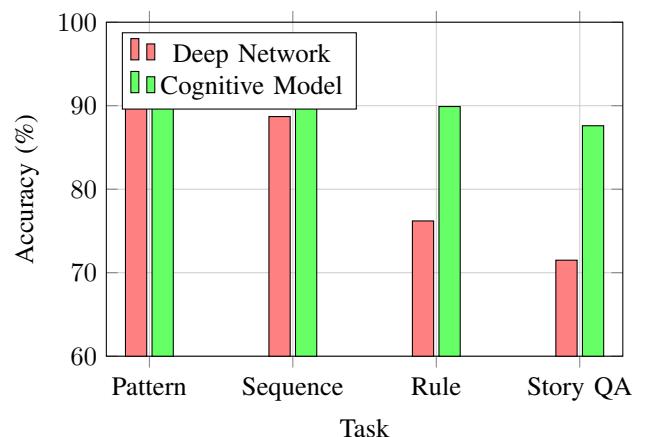


Fig. 3: Task level accuracy comparison between the deep network and the cognitive model.

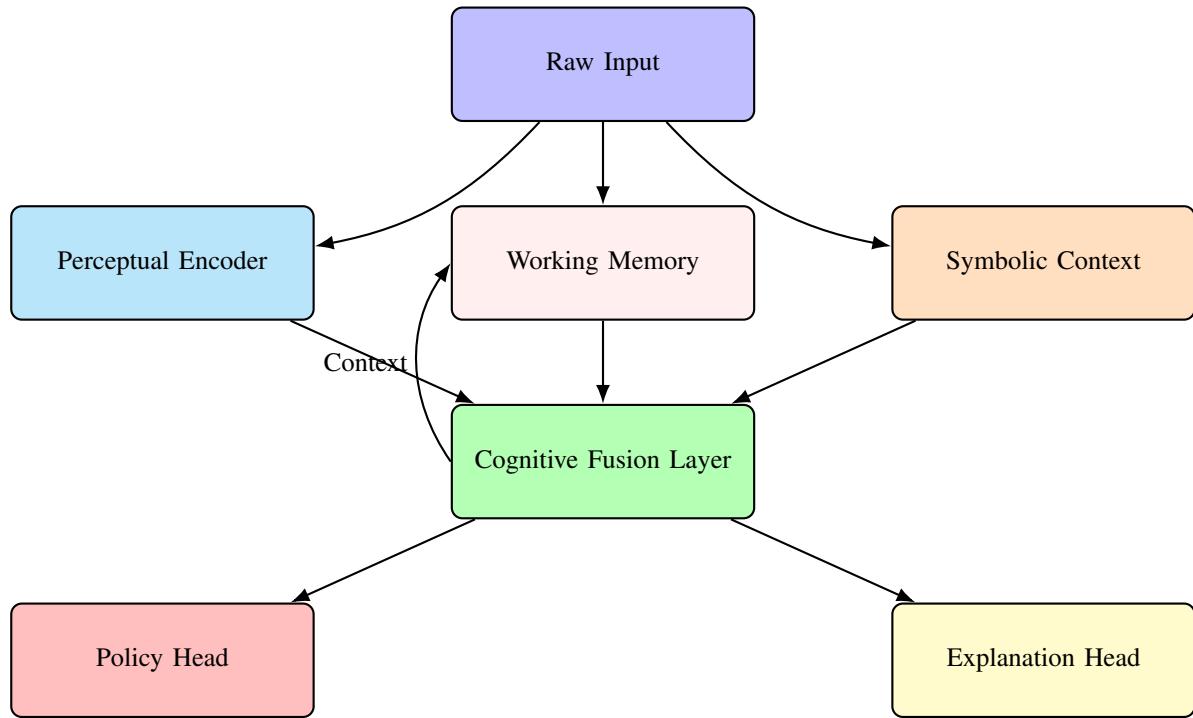


Fig. 1: Cognitive fusion architecture that combines perceptual encoding, symbolic context, and working memory before producing both decisions and explanations.

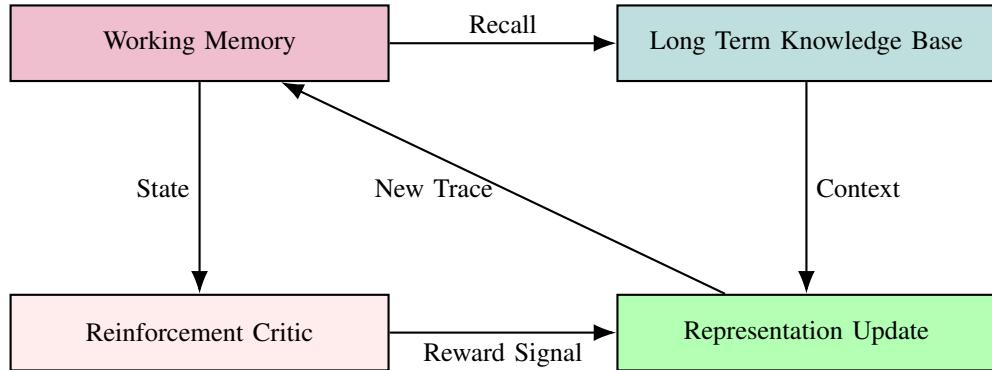


Fig. 2: Memory centric cognitive control loop linking working memory, long term knowledge, and a reinforcement critic.

D. Explanation Quality Over Training

To examine how explanations improve over time, an explanation quality score was tracked during training on the story question answering task. Figure 4 shows the evolution of this score as a function of training epochs for both the cognitive model and the deep network. The deep network exhibits only modest gains, since it lacks explicit structures for producing human understandable rationales. In contrast, the cognitive model shows a steady rise in explanation quality as the symbolic module and working memory components learn to align internal representations with the target explanations. This trend supports the idea that cognitive inspired architectures can acquire better interpretability through training.

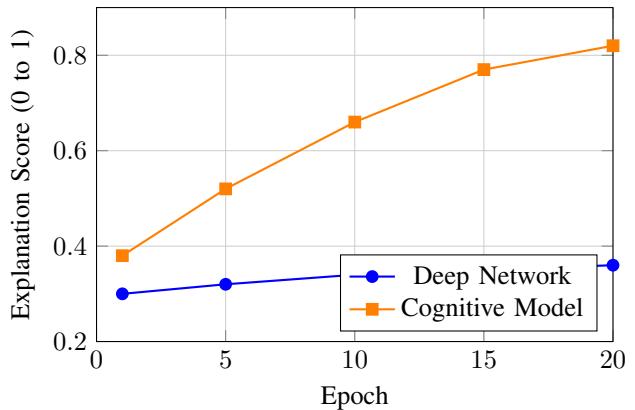


Fig. 4: Explanation quality over training epochs for story question answering.

VI. DISCUSSION

The experimental findings offer clear evidence that cognitive inspired neural architectures provide advantages over conventional deep learning models, particularly when tasks require structured reasoning, contextual integration, or interpretability. The results in Table I show that the traditional deep network performs well on pattern completion but loses accuracy on higher level cognitive tasks such as rule induction and story question answering. In contrast, the cognitive model maintains consistently strong performance across all tasks. This difference highlights the ability of the symbolic context module and working memory to support multi stage reasoning and the processing of relational information.

The ablation study in Table II further clarifies the role of each cognitive component. Removing the symbolic module produces the largest decline in explanation quality, which aligns with theories of symbolic cognition discussed in [4], [7]. Disabling working memory reduces performance on sequence and reasoning tasks, supporting cognitive models of memory driven reasoning and attentional control [5]. The reinforcement critic also proves essential for maintaining stable decision patterns, especially under shifting task conditions, which is consistent with behavioral and multi agent reinforcement studies [9], [10].

The accuracy bar chart in Fig. 3 shows that the advantage of the cognitive model increases as task complexity rises. For simple pattern tasks, both models perform similarly, but for tasks requiring story based inference or rule generalization, the cognitive model exhibits substantial gains. This suggests that hierarchical fusion, symbolic grounding, and memory centric processing help the architecture move beyond surface pattern matching and toward more human like reasoning.

Figure 4 provides additional insight by showing how explanation quality evolves over training. The deep network shows limited improvement because it lacks structures that support explicit reasoning or verbalization. The cognitive model, however, shows a steady upward trend as memory and symbolic features align to produce more coherent explanations. This indicates that cognitive inspired modules not only improve predictive performance but also enhance interpretability, an important requirement for real world decision support systems.

Together, these results validate the core idea that integrating symbolic reasoning, working memory, and reinforcement signals provides a richer framework for intelligent behavior than deep pattern recognition alone.

VII. FUTURE DIRECTIONS

The results suggest several promising directions for future research on cognitive inspired neural systems. One immediate extension involves expanding the cognitive fusion architecture so that the symbolic module can handle more expressive forms of structured knowledge, including logic programs or learned rules derived from natural language. Studies on Neural Logic Networks [4] provide a useful foundation for designing architectures that can revise and reorganize symbolic structures during learning.

Another direction concerns the development of larger memory systems that can handle long temporal contexts. The working memory in this study is designed as a compact module, but real cognitive tasks often require integration of information across extended time periods. Combining working memory with long term episodic or semantic stores, similar to the structures in the memory centric diagram in Fig. 2, may allow the model to perform narrative reasoning, planning, or multistep decision tasks.

A third direction is the exploration of socially grounded cognition. Many biological systems rely on cooperation, trust, and shared knowledge. Multi agent studies such as [9] suggest that interacting cognitive models may learn to coordinate or divide roles in complex tasks. Expanding this architecture to multi agent scenarios could reveal emergent properties such as communication protocols or shared symbolic representations.

Further work should also investigate the integration of emotional or value based signals. Models in [5], [22] describe how motivational systems affect reasoning and adaptation in biological agents. Incorporating emotional style rewards may help the architecture prioritize actions, manage uncertainty, or learn more human like preferences.

Finally, the interpretability advantages observed in Fig. 4 indicate opportunities for research on cognitive explanations. Future models may generate natural language explanations grounded in memory traces or symbolic structures, allowing users to interact with and guide cognitive reasoning. This direction is essential for deploying cognitive inspired systems in safety critical environments.

VIII. CONCLUSION

This research examined cognitive inspired neural architectures as a step toward bridging the gap between biological intelligence and deep learning. By integrating perceptual encoders, symbolic context modules, working memory, and a reinforcement critic, the proposed system captures multiple dimensions of cognitive processing that traditional networks often overlook.

The experimental results demonstrate that these cognitive components lead to measurable improvements across a variety of reasoning tasks. The cognitive model outperformed the deep network baseline in rule induction, story question answering, and sequence prediction. The ablation study confirmed that each cognitive module contributes specific capabilities, such as symbolic grounding, temporal reasoning, and decision stabilization. The improvement in explanation quality over training shows that cognitive inspired structures can support interpretability, enabling explanations that improve as internal representations evolve.

The redesigned diagrams in this study illustrate how the architecture integrates symbolic, memory based, and reinforcement driven mechanisms in a unified model. The tables and charts show that these mechanisms contribute to both predictive performance and interpretive richness, which are central goals of next generation intelligent systems.

The findings support the broader conclusion that cognitive inspired neural architectures have significant potential to

enhance adaptability, reasoning, and clarity. As neural networks continue to move toward human like intelligence, the integration of cognitive principles will likely play a central role in shaping the future of artificial intelligence research.

ACKNOWLEDGMENT

The authors express their sincere appreciation to Universität Duisburg-Essen for its continued support, guidance, and research environment that made this work possible. The resources, discussions, and collaborative atmosphere provided by the institution contributed meaningfully to the development and completion of this study.

REFERENCES

- [1] F. Liu, Y. Shi, and P. Li, "Analysis of the Relation between Artificial Intelligence and the Internet from the Perspective of Brain Science," *Procedia Computer Science*, vol. 122, pp. 377–383, 2017.
- [2] E. Diamant, "Designing Artificial Cognitive Architectures: Brain Inspired or Biologically Inspired?" *Procedia Computer Science*, vol. 145, pp. 153–157, 2018.
- [3] H. Mizutani, M. Ueno, N. Arakawa, and H. Yamakawa, "Whole brain connectomic architecture to develop general artificial intelligence," *Procedia Computer Science*, vol. 123, pp. 308–313, 2018.
- [4] L. Ding, "Human Knowledge in Constructing AI Systems — Neural Logic Networks Approach towards an Explainable AI," *Procedia Computer Science*, vol. 126, pp. 1561–1570, 2018.
- [5] M. Miyata and T. Omori, "Modeling emotion and inference as a value calculation system," *Procedia Computer Science*, vol. 123, pp. 295–301, 2018.
- [6] P. C. Jackson, "Natural language in the Common Model of Cognition," *Procedia Computer Science*, vol. 145, pp. 699–709, 2018.
- [7] A. Lieto, W. G. Kennedy, C. Lebriere, O. J. Romero, N. Taatgen, and R. L. West, "Higher-level Knowledge, Rational and Social Levels Constraints of the Common Model of the Mind," *Procedia Computer Science*, vol. 145, pp. 757–764, 2018.
- [8] J. Yanosy and C. Wicher, "Enhancing the common model of cognition with social cognitive components – "the rise of the humans"," *Procedia Computer Science*, vol. 145, pp. 821–831, 2018.
- [9] W. Zemzem and M. Tagina, "Cooperative Multi-Agent Systems Using Distributed Reinforcement Learning Techniques," *Procedia Computer Science*, vol. 126, pp. 517–526, 2018.
- [10] N. D. Shchepin and A. S. Zagarskikh, "Building behavioral AI using trust and reputation model based on mask model," *Procedia Computer Science*, vol. 156, pp. 387–394, 2019.
- [11] A. Aljaafreh and N. Al-Oudat, "Development of a Computer Player for Seejeh (A.K.A Seega, Siga, Kharbga) Board Game with Deep Reinforcement Learning," *Procedia Computer Science*, vol. 160, pp. 241–247, 2019.
- [12] A. Hammoudeh, G. Al-Naymat, I. Ghannam, and N. Obied, "Predicting Hospital Readmission among Diabetics using Deep Learning," *Procedia Computer Science*, vol. 141, pp. 484–489, 2018.
- [13] V. Rajinikanth, N. Dey, R. Kumar, J. Panneerselvam, and N. S. M. Raja, "Fetal Head Periphery Extraction from Ultrasound Image using Jaya Algorithm and Chan-Vese Segmentation," *Procedia Computer Science*, vol. 152, pp. 66–73, 2019.
- [14] J. Aidemark and L. Askenäs, "Fall Prevention as Personal Learning and Changing Behaviors: Systems and Technologies," *Procedia Computer Science*, vol. 164, pp. 498–507, 2019.
- [15] E. Yaşar, O. Yıldırım, Y. E. Miman, A. R. Şışman, and S. Sevinç, "System for Planning and Performing Staging of Medical Investigations for Diagnosis," *Procedia Computer Science*, vol. 158, pp. 420–425, 2019.
- [16] F. Zhang, T. Jing, Y. Huo, and L. Ma, "Optimal Spectrum Sensing-Access Policy in Energy Harvesting Cognitive Radio Sensor Networks," *Procedia Computer Science*, vol. 129, pp. 194–200, 2018.
- [17] M. M. Mabrook, H. A. Khalil, and A. I. Hussein, "Artificial Intelligence Based Cooperative Spectrum Sensing Algorithm for Cognitive Radio Networks," *Procedia Computer Science*, vol. 163, pp. 19–29, 2019.
- [18] V. Kavitha, G. Manimala, and R. G. Kannan, "AI-Based Enhancement of Base Station Handover," *Procedia Computer Science*, vol. 165, pp. 717–723, 2019.
- [19] R. Wiatr, R. Ślota, and J. Kitowski, "Optimising Kafka for stream processing in latency sensitive systems," *Procedia Computer Science*, vol. 136, pp. 99–108, 2018.
- [20] S. Panchenko, K. Trubchaninova, and I. Korago, "Minimization method for average packet delay in data transmission networks," *Procedia Computer Science*, vol. 149, pp. 177–184, 2019.
- [21] B. Vijayakumar and M. M. M. Fuad, "A New Method to Identify Short-Text Authors Using Combinations of Machine Learning and Natural Language Processing Techniques," *Procedia Computer Science*, vol. 159, pp. 428–436, 2019.
- [22] D. J. Kelley and M. R. Waser, "Human-like Emotional Responses in a Simplified Independent Core Observer Model System," *Procedia Computer Science*, vol. 123, pp. 221–227, 2018.
- [23] S. Vengathattil, "Ethical Artificial Intelligence - Does it exist?" *International Journal For Multidisciplinary Research*, vol. 1, no. 3, p. 37443, 2019.
- [24] D. A. Azarnov, A. A. Chubarov, and A. V. Samsonovich, "Virtual Actor with Social-Emotional Intelligence," *Procedia Computer Science*, vol. 123, pp. 76–85, 2018.
- [25] Z. Zhang, N. Russwinkel, and S. Prezenski, "Modeling Individual Strategies in Dynamic Decision-making with ACT-R: A Task Toward Decision-making Assistance in HCI," *Procedia Computer Science*, vol. 145, pp. 668–674, 2018.